最小生成树问题中Kruskal算法和Prim算法的C语言实现

时间:2021-08-09 12:36:24

 Kruskal算法:

void Kruskal(Edge E[],int n,int e)
{
int i,j,m1,m2,sn1,sn2,k;
int vset[MAXE];
for (i=0;i<n;i++) vset[i]=i; //初始化辅助数组
k=1; //k表示当前构造最小生成树的第几条边,初值为1
j=0; //E中边的下标,初值为0
while (k<n) //生成的边数小于n时循环
{
m1=E[j].u;m2=E[j].v; //取一条边的头尾顶点
sn1=vset[m1];sn2=vset[m2]; //分别得到两个顶点所属的集合编号
if (sn1!=sn2) //两顶点属于不同的集合,该边是最小生成树的一条边
{
printf(" (%d,%d):%d/n",m1,m2,E[j].w);
k++; //生成边数增1
for (i=0;i<n;i++) //两个集合统一编号
if (vset[i]==sn2) //集合编号为sn2的改为sn1
vset[i]=sn1;
}
j++; //扫描下一条边
}
}
Prim算法:
void prim(MGraph g,int v)
{
int lowcost[MAXV],min,n=g.vexnum;
int closest[MAXV],i,j,k;
for (i=0;i<n;i++) //给lowcost[]和closest[]置初值
{
lowcost[i]=g.edges[v][i];
closest[i]=v;
}
for (i=1;i<n;i++) //找出n-1个顶点
{
min=INF;
for (j=0;j<n;j++) //在(V-U)中找出离U最近的顶点k
if (lowcost[j]!=0 && lowcost[j]<min)
{
min=lowcost[j];k=j;
}
printf(" 边(%d,%d)权为:%d/n",closest[k],k,min);
lowcost[k]=0; //标记k已经加入U
for (j=0;j<n;j++) //修改数组lowcost和closest
if (g.edges[k][j]!=0 && g.edges[k][j]<lowcost[j])
{
lowcost[j]=g.edges[k][j];closest[j]=k;
}
}
}

【程序系转载,稍加编辑,出处详见http://zhidao.baidu.com/question/155997031.html

 

 

蚊子小结:

  Krustal算法的运行时间取决于不相交集合数据结构是如何实现的。上述程序使用数组实现不相交集合数据结构,思路简单,但耗时相对较长。另一种实现不相交集合数据结构的方法是采用有根数,在实践上可以到达线性的运行时间。

  Prim算法的运行时间取决于优先队列是如何实现的。如果用二叉最小堆来实现,Prim算法需要O(ElgV)时间,若改用斐波那契堆,则可以将运行时间改进到O(E+VlgV)。