Description
The player on move may remove (A), (B), (A, B), (A, B, C), or (B,F), etc., but may not remove (A, C), (D, E), (H, I) or (B, G).
For purposes of writing 2D-Nim-playing software, a certain programmer wants to be able to tell whether or not a certain position has ever been analyzed previously. Because of the rules of 2D-Nim, it should be clear that the two boards above are essentially equivalent. That is, if there is a winning strategy for the left board, the same one must apply to the right board. The fact that the contiguous groups of pieces appear in different places and orientations is clearly irrelevant. All that matters is that the same clusters of pieces (a cluster being a set of contiguous pieces that can be reached from each other by a sequence of one-square vertical or horizontal moves) appear in each. For example, the cluster of pieces (A, B, C, F, G) appears on both boards, but it has been reflected (swapping left and right), rotated, and moved. Your task is to determine whether two given board states are equivalent in this sense or not.
Input
Output
Sample Input
2
8 5 11
0 0 1 0 2 0 5 0 7 0 1 1 2 1 5 1 3 3 5 2 4 4
0 4 0 3 0 2 1 1 1 4 1 3 3 3 5 2 6 2 7 2 7 4
8 5 11
0 0 1 0 2 0 5 0 7 0 1 1 2 1 5 1 3 3 6 1 4 4
0 4 0 3 0 2 1 1 1 4 1 3 3 3 5 2 6 2 7 2 7 4
Sample Output
YES
NO
Source
#include <iostream> using namespace std; bool map[][];
int W, H, n; struct dot
{
int x, y;
}dots[]; int dot1[], dot2[]; void quicksort(int left, int right, int *dotx)
{
int i, j, temp;
if (left < right)
{
i = left, j = right, temp = dotx[left];
while (i < j)
{
while (i < j&&dotx[j] >= temp) j--;
dotx[i] = dotx[j];
while (i < j&&dotx[i] <= temp) i++;
dotx[j] = dotx[i];
}
dotx[i] = temp;
quicksort(left, j - , dotx);
quicksort(j + , right, dotx);
}
} void Count(int *dot, int i)
{
int x, y, sum;
sum = ;
x = dots[i].x;
y = dots[i].y;
y--;
while (map[x][y] && y >= ) //统计左边点的个数
{
sum++;
y--;
}
y = dots[i].y;
y++;
while (map[x][y] && y < H) //统计右边点的个数
{
sum++;
y++;
}
y = dots[i].y;
x--;
while (map[x][y] && x >= ) //统计下面点的个数
{
sum++;
x--;
}
x = dots[i].x;
x++;
while (map[x][y] && x < W) //统计上面点的个数
{
sum++;
x++;
}
dot[i] = sum;
} int main()
{
int t;
cin >> t;
int sum1, sum2;
while (t--)
{
sum1 = sum2 = ;
memset(map, false, sizeof(map));
cin >> W >> H >> n;
for (int i = ; i <= n; i++) //输入第一组点
{
cin >> dots[i].x >> dots[i].y;
map[dots[i].x][dots[i].y] = true;
}
for (int i = ; i <= n; i++)
Count(dot1, i), sum1 += dot1[i]; //第一张图的连续点数
memset(map, false, sizeof(map));
for (int i = ; i <= n; i++) //输入第二组点
{
cin >> dots[i].x >> dots[i].y;
map[dots[i].x][dots[i].y] = true;
}
for (int i = ; i <= n; i++)
Count(dot2, i), sum2 += dot2[i]; //第二张图的连续点数
if (sum1 != sum2) cout << "NO" << endl;
else
{
quicksort(, n, dot1);
quicksort(, n, dot2);
int flag = ;
for (int i = ; i <= n; i++)
{
if (dot1[i] != dot2[i])
{
//我之前在这里写了输出用来看数据的
//我提交的时候忘记删了,结果还对了
//不得不说这测试数据是真的水
flag = ;
break;
}
}
if (flag) cout << "YES" << endl;
else cout << "NO" << endl;
}
}
}
POJ 1021 2D-Nim的更多相关文章
-
Georgia and Bob POJ - 1704 阶梯Nim
$ \color{#0066ff}{ 题目描述 }$ Georgia and Bob decide to play a self-invented game. They draw a row of g ...
-
poj 1021矩阵平移装换后是否为同一个矩阵
2D-Nim Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3081 Accepted: 1398 Descriptio ...
-
POJ 1704 Staircase Nim 阶梯博弈
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int ...
-
POJ 1021 人品题
报告见代码.. #include <iostream> #include <cstdio> #include <cstring> #include <algo ...
-
一位学长的ACM总结(感触颇深)
发信人: fennec (fennec), 信区: Algorithm 标 题: acm 总结 by fennec 发信站: 吉林大学牡丹园站 (Wed Dec 8 16:27:55 2004) AC ...
-
狗狗40题~ (Volume C)
A - Triangles 记忆化搜索呗.搜索以某三角形为顶的最大面积,注意边界情况. #include <stdio.h> #include <cstring> #inclu ...
-
【POJ】【2068】Nim
博弈论/DP 这是Nim?这不是巴什博奕的变形吗…… 我也不会捉啊,不过一看最多只有20个人,每人最多拿16个石子,总共只有8196-1个石子,范围好像挺小的,嗯目测暴力可做. so,记忆化搜索直接水 ...
-
【POJ】【2975】Nim
博弈论 我哭……思路错误WA了6次?(好像还有手抖点错……) 本题是要求Nim游戏的第一步必胜策略有几种. 一开始我想:先全部异或起来得到ans,从每个比ans大的堆里取走ans个即可,答案如此累计… ...
-
POJ 1704 Georgia and Bob (Nim游戏变形)
题目:http://poj.org/problem?id=1704 思路:Nim游戏策略,做如下转换,如果N是偶数,则两两配对,将两个数之间的格子数(距离)看做成这一堆石头的数量. 如果N是奇数,则将 ...
随机推荐
-
struts2笔记(3)
关于回显: 如果是int型,默认就会回显为0,如果不想让回显,则Integer就好 //**************************************声明式验证************* ...
-
SQL函数学习(十九):CAST()函数和CONVERT()函数
19.CAST()函数和CONVERT()函数 CAST()函数可以将某种数据类型的表达式转化为另一种数据类型 CONVERT()函数 也 可以将指定的数据类型转换为另一种数据类型 19.1 CAST ...
-
UIBezierPath 和 CAShapeLayer 绘画图纸
五角大楼画一个小圆圈戴: - (void)drawPentagon{ //(1)UIBezierPath对象 UIBezierPath *aPath = [UIBezierPath bezierPat ...
-
mvc一对多模型表单的快速构建
功能需求描述 Q:在实际的开发中,经常会遇到一个模型中包含有多个条目的表单.如何将数据提交到后台? A: 以数组的形式提交到后台就Ok了(真的那么简单么,如果再嵌套一层呢?) A2:拆分多个模型,映射 ...
-
W3C 代码标准规范
W3C通过设立领域(Domains)和标准计划(Activities)来组织W3C的标准活动,围绕每个标准计划,会设立相关的W3C工作组织(包括工作组.社区组.商务组等).W3C会根据产业界的标准需求 ...
-
java Properties (属性集)
加载Properties Properties downloadLog = new Properties(); try { //加载logFile文件 downloadLog.load(new Fil ...
-
Python GUI - tkinter
目录: Tkinter 组件 标准属性 几何管理 代码实例: 1. Label & Button 2. Entry & Text 3.Listbox列表 4.Radiobutton单选 ...
-
hostapd 和 wap_supplicant
hostapd : user space daemon for access points, including, e.g., IEEE 802.1X/WPA/EAP Authenticator fo ...
-
【Leetcode】378. Kth Smallest Element in a Sorted Matrix
Question: Given a n x n matrix where each of the rows and columns are sorted in ascending order, fin ...
-
Spark运行模式_Spark自带Cluster Manager的Standalone Client模式(集群)
终于说到了体现分布式计算价值的地方了! 和单机运行的模式不同,这里必须在执行应用程序前,先启动Spark的Master和Worker守护进程.不用启动Hadoop服务,除非你用到了HDFS的内容. 启 ...