import numpy as np
import matplotlib.pyplot as plt from sklearn import metrics
from sklearn import datasets
from sklearn.semi_supervised import LabelPropagation def load_data():
'''
加载数据集
'''
digits = datasets.load_digits()
###### 混洗样本 ########
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data)) # 样本下标集合
rng.shuffle(indices) # 混洗样本下标集合
X = digits.data[indices]
y = digits.target[indices]
###### 生成未标记样本的下标集合 ####
# 只有 10% 的样本有标记
n_labeled_points = int(len(y)/10)
# 后面 90% 的样本未标记
unlabeled_indices = np.arange(len(y))[n_labeled_points:]
return X,y,unlabeled_indices #半监督学习标准迭代式标记传播算法LabelPropagation模型
def test_LabelPropagation(*data):
'''
测试 LabelPropagation 的用法
'''
X,y,unlabeled_indices=data
# 必须拷贝,后面要用到 y
y_train=np.copy(y)
# 未标记样本的标记设定为 -1
y_train[unlabeled_indices]=-1
clf=LabelPropagation(max_iter=100,kernel='rbf',gamma=0.1)
clf.fit(X,y_train)
### 获取预测准确率
# 预测标记
predicted_labels = clf.transduction_[unlabeled_indices]
# 真实标记
true_labels = y[unlabeled_indices]
print("Accuracy:%f"%metrics.accuracy_score(true_labels,predicted_labels))
# 或者 print("Accuracy:%f"%clf.score(X[unlabeled_indices],true_labels)) # 获取半监督分类数据集
data=load_data()
# 调用 test_LabelPropagation
test_LabelPropagation(*data)
def test_LabelPropagation_rbf(*data):
'''
测试 LabelPropagation 的 rbf 核时,预测性能随 alpha 和 gamma 的变化
'''
X,y,unlabeled_indices=data
# 必须拷贝,后面要用到 y
y_train=np.copy(y)
# 未标记样本的标记设定为 -1
y_train[unlabeled_indices]=-1 fig=plt.figure()
ax=fig.add_subplot(1,1,1)
alphas=np.linspace(0.01,1,num=10,endpoint=True)
gammas=np.logspace(-2,2,num=50)
# 颜色集合,不同曲线用不同颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
## 训练并绘图
for alpha,color in zip(alphas,colors):
scores=[]
for gamma in gammas:
clf=LabelPropagation(max_iter=100,gamma=gamma,alpha=alpha,kernel='rbf')
clf.fit(X,y_train)
scores.append(clf.score(X[unlabeled_indices],y[unlabeled_indices]))
ax.plot(gammas,scores,label=r"$\alpha=%s$"%alpha,color=color) ### 设置图形
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_xscale("log")
ax.legend(loc="best")
ax.set_title("LabelPropagation rbf kernel")
plt.show() # 调用 test_LabelPropagation_rbf
test_LabelPropagation_rbf(*data)
def test_LabelPropagation_knn(*data):
'''
测试 LabelPropagation 的 knn 核时,预测性能随 alpha 和 n_neighbors 的变化
'''
X,y,unlabeled_indices=data
y_train=np.copy(y) # 必须拷贝,后面要用到 y
y_train[unlabeled_indices]=-1 # 未标记样本的标记设定为 -1 fig=plt.figure()
ax=fig.add_subplot(1,1,1)
alphas=np.linspace(0.01,1,num=10,endpoint=True)
Ks=[1,2,3,4,5,8,10,15,20,25,30,35,40,50]
# 颜色集合,不同曲线用不同颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
## 训练并绘图
for alpha,color in zip(alphas,colors):
scores=[]
for K in Ks:
clf=LabelPropagation(max_iter=100,n_neighbors=K,alpha=alpha,kernel='knn')
clf.fit(X,y_train)
scores.append(clf.score(X[unlabeled_indices],y[unlabeled_indices]))
ax.plot(Ks,scores,label=r"$\alpha=%s$"%alpha,color=color) ### 设置图形
ax.set_xlabel(r"$k$")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("LabelPropagation knn kernel")
plt.show() # 调用 test_LabelPropagation_knn
test_LabelPropagation_knn(*data)