01 - Machine learning infographic
图片解读机器学习的基本概念、五大流派与九种常见算法
EN:http://usblogs.pwc.com/emerging-technology/machine-learning-101/
CN:https://zhuanlan.zhihu.com/p/29440419
- Machine learning overview (infographic):http://usblogs.pwc.com/emerging-technology/a-look-at-machine-learning-infographic/
- Machine learning methods (infographic):http://usblogs.pwc.com/emerging-technology/machine-learning-methods-infographic/
- Machine learning evolution (infographic):http://usblogs.pwc.com/emerging-technology/machine-learning-evolution-infographic/
02 - 统计与概率
- 机器学习基础之「统计篇」:https://woaielf.github.io/2017/03/20/sta-all/
- 熟悉常见概率分布:https://paul.pub/common-probability-distributions/
03 - 零基础入门深度学习
- (1)感知器: https://www.zybuluo.com/hanbingtao/note/433855
- (2)线性单元和梯度下降: https://www.zybuluo.com/hanbingtao/note/448086
- (3)神经网络和反向传播算法: https://www.zybuluo.com/hanbingtao/note/476663
- (4)卷积神经网络: https://www.zybuluo.com/hanbingtao/note/485480
- (5)循环神经网络: https://zybuluo.com/hanbingtao/note/541458
- (6)长短时记忆网络(LSTM): https://zybuluo.com/hanbingtao/note/581764
- (7)递归神经网络: https://zybuluo.com/hanbingtao/note/626300
04 - 微信公众号
可作为信息搜索途径
- 机器之心
- AI前线
- AI研习社
05 - 莫烦
HomePage:https://morvanzhou.github.io/
网易云课堂:https://study.163.com/provider/1111519/index.htm
GitHub:https://github.com/MorvanZhou/
推荐学习顺序:https://morvanzhou.github.io/learning-steps/
- Tutorials:https://github.com/MorvanZhou/tutorials
- 有趣的机器学习:https://morvanzhou.github.io/tutorials/machine-learning/ML-intro/
- 机器学习系列讲解:https://morvanzhou.github.io/tutorials/machine-learning/
- TensorFlow教程2017可视化教学代码:https://github.com/MorvanZhou/Tensorflow-Tutorial
06 - 深度学习入门十四篇
- 最通俗易懂的深度学习入门十四篇:https://yq.aliyun.com/topic/111
07 - 深入浅出TensorFlow
https://www.infoq.cn/article/TensorFlow-indepth、
- (一):深度学习及 TensorFlow 简介
- (二):TensorFlow 解决 MNIST 问题入门
- (三):训练神经网络模型的常用方法
- (四):卷积神经网络
- (五):循环神经网络简介
- (六):TensorFlow 高层封装
- (七):TensorFlow 计算加速
08 - Google机器学习术语表
本术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义。
09 - 阿里云机器学习PAI
阿里巴巴机器学习系列课程:https://yq.aliyun.com/articles/181384
10 - scikit-learn入门实例
- 使用scikit-learn进行线性回归分析:https://paul.pub/sklearn-l1/
- 分类预测与scikit-learn:https://paul.pub/sklearn-l2/
11 - ApacheCN
- HomePage:http://www.apachecn.org/
- GitHub:https://github.com/apachecn
- ApacheCN - AI learning:https://github.com/apachecn/AiLearning
- ApacheCN - Kaggle 项目实战(教程):https://github.com/apachecn/kaggle
- ApacheCN - *大学林轩田机器学习笔记:https://github.com/apachecn/ntu-hsuantienlin-ml
- ApacheCN - Python数据分析与挖掘实战:https://github.com/apachecn/python_data_analysis_and_mining_action
12 - 机器学习笔记
13 - 机器学习资源大全中文版 - Python
14 - 机器学习浏览器书签
TensorFlow
- TensorFlow:https://www.tensorflow.org/
- TensorFlow - CN:https://tensorflow.google.cn/
- TensorFlow - Installation:https://www.tensorflow.org/install
- TensorFlow - Tutorials:https://www.tensorflow.org/tutorials
- TensorFlow - Tutorials Keras:https://www.tensorflow.org/tutorials/keras
- TensorFlow - Guide:https://www.tensorflow.org/guide/
- TensorFlow - Guide Keras:https://www.tensorflow.org/guide/keras
- TensorFlow - API:https://www.tensorflow.org/api_docs/
- TensorFlow - API Keras:https://www.tensorflow.org/api_docs/python/tf/keras
Keras
- Keras - Documentation:https://keras.io/
- Keras - Documentation - zh:https://keras.io/zh/
- Keras - Blog:https://blog.keras.io/
- Keras - Installation:https://keras.io/#installation
- Keras - GitHub:https://github.com/keras-team/keras/
- Keras - GitHub-Examples:https://github.com/keras-team/keras/tree/master/examples
- Keras - GitHub-Applications:https://github.com/keras-team/keras/tree/master/keras/applications
- Keras - GitHub-FAQ:https://github.com/keras-team/keras/blob/master/docs/templates/getting-started/faq.md
Sklearn
- Sklearn:https://scikit-learn.org/
- Sklearn - Installation:https://scikit-learn.org/stable/install.html
- Sklearn - Documentation:https://scikit-learn.org/stable/documentation.html
- Sklearn - Quick Start:https://scikit-learn.org/stable/tutorial/basic/tutorial.html
- Sklearn - Examples:https://scikit-learn.org/stable/auto_examples/
- Sklearn - Tutorials:https://scikit-learn.org/stable/tutorial/index.html
- Sklearn - Tutorials Exercises:https://scikit-learn.org/stable/auto_examples/#tutorial-exercises
References
- References - 机器学习术语表:https://developers.google.com/machine-learning/glossary/
- References - 莫烦教程:https://morvanzhou.github.io/tutorials/
- References - Sklearn 中文文档:https://github.com/apachecn/scikit-learn-doc-zh/
- References - Keras Tutorials:https://github.com/xingkongliang/Keras-Tutorials
- References - Keras resources:https://github.com/fchollet/keras-resources
- References - TensorFlow 中文社区:http://www.tensorfly.cn/
- References - TensorFlow Course:https://github.com/open-source-for-science/TensorFlow-Course
- References - TensorFlow Examples:https://github.com/aymericdamien/TensorFlow-Examples