转载自:http://www.cnblogs.com/skywang12345/p/3691463.html
Ⅰ 图的基本概念
1. 图的定义
定义:图(graph)是由一些点(vertex)和这些点之间的连线(edge)所组成的;其中,点通常被成为"顶点(vertex)",而点与点之间的连线则被成为"边或弧"(edege)。通常记为,G=(V,E)。
2. 图的种类
根据边是否有方向,将图可以划分为:无向图和有向图。
2.1 无向图
上面的图G0是无向图,无向图的所有的边都是不区分方向的。G0=(V1,{E1})。其中,
(01) V1={A,B,C,D,E,F}。 V1表示由"A,B,C,D,E,F"几个顶点组成的集合。
(02) E1={(A,B),(A,C),(B,C),(B,E),(B,F),(C,F), (C,D),(E,F),(C,E)}。 E1是由边(A,B),边(A,C)...等等组成的集合。其中,(A,C)表示由顶点A和顶点C连接成的边。
2.2 有向图
上面的图G2是有向图。和无向图不同,有向图的所有的边都是有方向的! G2=(V2,{A2})。其中,
(01) V2={A,C,B,F,D,E,G}。 V2表示由"A,B,C,D,E,F,G"几个顶点组成的集合。
(02) A2={<A,B>,<B,C>,<B,F>,<B,E>,<C,E>,<E,D>,<D,C>,<E,B>,<F,G>}。 E1是由矢量<A,B>,矢量<B,C>...等等组成的集合。其中,矢量<A,B)表示由"顶点A"指向"顶点C"的有向边。
3. 邻接点和度
3.1 邻接点
一条边上的两个顶点叫做邻接点。
例如,上面无向图G0中的顶点A和顶点C就是邻接点。
在有向图中,除了邻接点之外;还有"入边"和"出边"的概念。
顶点的入边,是指以该顶点为终点的边。而顶点的出边,则是指以该顶点为起点的边。
例如,上面有向图G2中的B和E是邻接点;<B,E>是B的出边,还是E的入边。
3.2 度
在无向图中,某个顶点的度是邻接到该顶点的边(或弧)的数目。
例如,上面无向图G0中顶点A的度是2。
在有向图中,度还有"入度"和"出度"之分。
某个顶点的入度,是指以该顶点为终点的边的数目。而顶点的出度,则是指以该顶点为起点的边的数目。
顶点的度=入度+出度。
例如,上面有向图G2中,顶点B的入度是2,出度是3;顶点B的度=2+3=5。
4. 路径和回路
路径:如果顶点(Vm)到顶点(Vn)之间存在一个顶点序列。则表示Vm到Vn是一条路径。
路径长度:路径中"边的数量"。
简单路径:若一条路径上顶点不重复出现,则是简单路径。
回路:若路径的第一个顶点和最后一个顶点相同,则是回路。
简单回路:第一个顶点和最后一个顶点相同,其它各顶点都不重复的回路则是简单回路。
5. 连通图和连通分量
连通图:对无向图而言,任意两个顶点之间都存在一条无向路径,则称该无向图为连通图。 对有向图而言,若图中任意两个顶点之间都存在一条有向路径,则称该有向图为强连通图。
连通分量:非连通图中的各个连通子图称为该图的连通分量。
6. 权
在学习"哈夫曼树"的时候,了解过"权"的概念。图中权的概念与此类似。
上面就是一个带权的图。
Ⅱ 图的存储结构
上面了解了"图的基本概念",下面开始介绍图的存储结构。图的存储结构,常用的是"邻接矩阵"和"邻接表"。
1. 邻接矩阵
邻接矩阵是指用矩阵来表示图。它是采用矩阵来描述图中顶点之间的关系(及弧或边的权)。
假设图中顶点数为n,则邻接矩阵定义为:
下面通过示意图来进行解释。
图中的G1是无向图和它对应的邻接矩阵。
图中的G2是无向图和它对应的邻接矩阵。
通常采用两个数组来实现邻接矩阵:一个一维数组用来保存顶点信息,一个二维数组来用保存边的信息。
邻接矩阵的缺点就是比较耗费空间。
2. 邻接表
邻接表是图的一种链式存储表示方法。它是改进后的"邻接矩阵",它的缺点是不方便判断两个顶点之间是否有边,但是相对邻接矩阵来说更省空间。
图中的G1是无向图和它对应的邻接矩阵。
图中的G2是无向图和它对应的邻接矩阵。
PHP算法 《图》 之 理论基础的更多相关文章
-
python数据结构与算法——图的最短路径(Floyd-Warshall算法)
使用Floyd-Warshall算法 求图两点之间的最短路径 不允许有负权边,时间复杂度高,思路简单 # 城市地图(字典的字典) # 字典的第1个键为起点城市,第2个键为目标城市其键值为两个城市间的直 ...
-
python数据结构与算法——图的最短路径(Dijkstra算法)
# Dijkstra算法——通过边实现松弛 # 指定一个点到其他各顶点的路径——单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, ...
-
python数据结构与算法——图的最短路径(Bellman-Ford算法)解决负权边
# Bellman-Ford核心算法 # 对于一个包含n个顶点,m条边的图, 计算源点到任意点的最短距离 # 循环n-1轮,每轮对m条边进行一次松弛操作 # 定理: # 在一个含有n个顶点的图中,任意 ...
-
python数据结构与算法——图的基本实现及迭代器
本文参考自<复杂性思考>一书的第二章,并给出这一章节里我的习题解答. (这书不到120页纸,要卖50块!!,一开始以为很厚的样子,拿回来一看,尼玛.....代码很少,给点提示,然后让读者自 ...
-
树的常见算法&;图的DFS和BFS
树及二叉树: 树:(数据结构中常见的树) 树的定义
-
7-6-有向图强连通分量的Kosaraju算法-图-第7章-《数据结构》课本源码-严蔚敏吴伟民版
课本源码部分 第7章 图 - 有向图强连通分量的Kosaraju算法 ——<数据结构>-严蔚敏.吴伟民版 源码使用说明 链接☛☛☛ <数据结构-C语言版>(严 ...
-
python数据结构与算法——图的广度优先和深度优先的算法
根据*的伪代码实现: 广度优先BFS: 使用队列,集合 标记初始结点已被发现,放入队列 每次循环从队列弹出一个结点 将该节点的所有相连结点放入队列,并标记已被发现 通过队列,将迷宫路口所有的门打 ...
-
数据结构与算法-图的最短路径Dijkstra
一 无向图单源最短路径,Dijkstra算法 计算源点a到图中其他节点的最短距离,是一种贪心算法.利用局部最优,求解全局最优解. 设立一个visited访问和dist距离数组,在初始化后每一次收集一 ...
-
算法图绘制工具Graphviz
graphviz是贝尔实验室设计的一个开源的画图工具,它的强大主要体现在“所思即所得"(WYTIWYG,what you think is what you get),这是和office的“ ...
-
算法-图(4)用边表示活动的网络(AOE网络)Activity On Edge Network
有向边表示活动,权值表示活动的持续时间,顶点表示事件. 只有一个开始点和完成点,称为源点.汇点,完成工程时间取决于从源点到汇点的最长路径长度,即在这条路径(关键路径)上所有活动的持续时间之和.关键路径 ...
随机推荐
-
阿里巴巴分布式服务框架dubbo学习笔记
Dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.简单的说,dubbo就是个服务框架,如果没有分布式的需求,其实是不需要用的 ...
-
转载--CentOS 6.3下部署LVS(NAT)+keepalived实现高性能高可用负载均衡
源地址:http://www.cnblogs.com/mchina/archive/2012/08/27/2644391.html 一.简介 VS/NAT原理图: 二.系统环境 实验拓扑: 系统平台: ...
-
CSS3 Media Queries模板
使用max-width @media screen and (max-width: 600px) { //你的样式放在这里.... } 使用min-width @media screen and (m ...
-
Delphi7中编译提示“Unsafe type &#39;PChar&#39;”的原因及处理办法
delphi7中加入了对.net的支持 在.net中是没有指针的(托管环境中),所以指针都是不安全的,不符合.net规范 所以d7里有警告,可以不管它 DELPHI7已经考虑到了移植到点NET的问题, ...
-
一款仿36氪iOS版APP源码
Features 离线缓存 解决视频播放器的网速慢卡顿 视频播放器调用简单 cell自适应高度 cell中嵌套webView cell中嵌套webView 条件实时搜索 Known problems ...
-
SpringTest 使用说明 -构建无污染纯绿色事务测试框架 (记录用)
@ContextConfiguration({"classpath:applicationContext.xml","classpath:spring/buyer/app ...
-
【和我一起学习Unity3D】Unity3D的坐标控制
坐标这个东西,在Unity3D里面是分为几个类的,各自是Vector2,Vector3.Vector4:含义各自是:二维坐标系,三维坐标系,四维坐标系.一般做游戏呢,用到的最多的就是Vector3了. ...
-
SQL一次查出相关类容避免长时间占用表(下)
/* server: db: EDI */ -- 以下案例多次查询同一张表,仅有Name条件不同 --可以使用一次查出相关类容避免长时间占用表 USE EDI GO DECLARE @FileType ...
-
dax学习
增长率 = (DIVIDE(SUM('业绩达成'[实际业绩]),CALCULATE(SUM('业绩达成'[实际业绩]),PREVIOUSMONTH('业绩达成'[周期])))-1)*100上月业绩 = ...
-
java 反射工具
<dependency> <groupId>org.reflections</groupId> <artifactId>reflections</ ...