霍夫变换是一种全局检测直线的方法,速度慢,会将一些不连续的线段判定为连续的线段。
理论:
1.在图像中检测直线的问题,其实质是找到构成直线的所有的像素点。那么问题就是从找到直线,变成找到符合y=mx+c的所有(x,y)的点的问题。
2.进行坐标系变化y=mx+c,变成c=-xm+y。这样表示为过点(m,c)的直线束。
3.xy空间的直线上每一个点在MC坐标系中都表现为经过(m,c)的直线。找到所有点的问题,转变为寻找直线的问题。
4.对于图像中的每一个点,在MC坐标系中对应着很多的直线。找到直线的交点,就对应着找到图像中的直线。
实际在使用这一原理的时候,不是采用直线的斜率和截距公式,而是用
如何实现:
1. 将θ角在-90度到90度的范围里,划分为很多区间,对所有的像素点(x,y)在所有θ角的时候,求出ρ.从而累加ρ值出现的次数。高于某个阈值的ρ就是一个直线。
2. 这个过程就类似于如下一个二维的表格,横坐标就是θ角,ρ就是到直线的最短距离。
横坐标θ不断变换,对于所有的不为0的像素点,计算出ρ,找到ρ在坐标(θ,ρ)的位置累加1.
3. 上图中局部最大的就是找到的直线的θ和ρ的值。
代码简要说明:
for( ang = 0, n = 0; n < numangle; ang += theta, n++ ) { tabSin[n] = (float)(sin(ang) * irho); tabCos[n] = (float)(cos(ang) * irho); } // stage 1. fill accumulator for( i = 0; i < height; i++ ) for( j = 0; j < width; j++ ) { if( image[i * step + j] != 0 ) for( n = 0; n < numangle; n++ ) { r = cvRound( j * tabCos[n] + i * tabSin[n] ); r += (numrho - 1) / 2; accum[(n+1) * (numrho+2) + r+1]++; } } // stage 2. find local maximums for( r = 0; r < numrho; r++ ) for( n = 0; n < numangle; n++ ) { int base = (n+1) * (numrho+2) + r+1; if( accum[base] > threshold && accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] && accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] ) sort_buf[total++] = base; } // stage 3. sort the detected lines by accumulator value icvHoughSortDescent32s( sort_buf, total, accum ); // stage 4. store the first min(total,linesMax) lines to the output buffer linesMax = MIN(linesMax, total); scale = 1./(numrho+2); for( i = 0; i < linesMax; i++ ) { CvLinePolar line; int idx = sort_buf[i]; int n = cvFloor(idx*scale) - 1; int r = idx - (n+1)*(numrho+2) - 1; line.rho = (r - (numrho - 1)*0.5f) * rho; line.angle = n * theta; cvSeqPush( lines, &line ); }
引用注明出处: http://www.cnblogs.com/smartvessel/archive/2011/10/20/2218654.html