关于Mysql索引的笔记

时间:2023-01-31 14:43:42

MySQL索引原理

  索引目的

  索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql。如果没有索引,那么你可能需要把所有单词看一遍才能找到你想要的,如果我想找到m开头的单词呢?或者ze开头的单词呢?是不是觉得如果没有索引,这个事情根本无法完成?

  索引原理  

  除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。

  数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段……这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。  

磁盘IO与预读

  前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。

  考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。

索引的数据结构

  前面讲了生活中索引的例子,索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生。

  详解b+树

关于Mysql索引的笔记

  真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。  

b+树的查找过程

  如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。这样的话,假如数据项为N,每个数据块存储的数据量为m,那么时间复杂度为log(m+1)N。

 b+树性质

  1.通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。

  2.当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

 索引

  当数据库一条记录里包含多个字段时,一棵B+树就只能存储主键,如果检索的是非主键字段,则主键索引失去作用,又变成顺序查找了。这时应该在第二个要检索的列上建立第二套索引。  这个索引由独立的B+树来组织。有两种常见的方法可以解决多个B+树访问同一套表数据的问题,一种叫做聚簇索引(clustered index ),一种叫做非聚簇索引(secondary index)。这两个名字虽然都叫做索引,但这并不是一种单独的索引类型,而是一种数据存储方式。对于聚簇索引存储来说,行数据和主键B+树存储在一起,辅助键B+树只存储辅助键和主键,主键和非主键B+树几乎是两种类型的树。对于非聚簇索引存储来说,主键B+树在叶子节点存储指向真正数据行的指针,而非主键。

 聚簇索引&非聚簇索引

  一图胜千言

关于Mysql索引的笔记

关于Mysql索引的笔记

关于page的结构,参见

  http://www.admin10000.com/document/5372.html

  

关于Mysql索引的笔记的更多相关文章

  1. Mysql 索引复习笔记

    之前学习索引后由于一直没怎么用,所以也只是粗略看了一下,最近发现索引的用处很大,并且也很多知识点,在此做复习记录. 什么是索引? 百度百科是这样描述的: 索引是为来加速对表中数据行中的检索而创建的一种 ...

  2. Mysql索引学习笔记

    1.btree索引与hash索引 下列范围查询适用于 btree索引和hash索引: SELECT * FROM t1 WHERE key_col = 1 OR key_col IN (15,18,2 ...

  3. mysql索引使用笔记

    1.使用explain语句查看性能mysql> explain select product_id from orders where order_id in (123, 312, 223, 1 ...

  4. MySQL索引优化 笔记

    少取字段,建立合理的索引 表优化: 1 定长与变长分离 如果都是定长 查询比较快 因为每一行的字节都是固定的 fixed 2 常用字段和不常用字段要分离 用户表 常用 放主表 个人介绍不常用 还比较长 ...

  5. mysql颠覆实战笔记&lpar;二&rpar;-- 用户登录&lpar;一&rpar;&colon;唯一索引的妙用

    版权声明:笔记整理者亡命小卒热爱*,崇尚分享.但是本笔记源自www.jtthink.com(程序员在囧途)沈逸老师的<web级mysql颠覆实战课程 >.如需转载请尊重老师劳动,保留沈逸 ...

  6. Mysql数据库学习笔记之数据库索引&lpar;index&rpar;

    什么是索引: SQL索引有两种,聚集索引和非聚集索引,索引主要目的是提高了SQL Server系统的性能,加快数据的查询速度与减少系统的响应时间. 聚集索引:该索引中键值的逻辑顺序决定了表中相应行的物 ...

  7. MySQL数据库学习笔记(六)----MySQL多表查询之外键、表连接、子查询、索引

    本章主要内容: 一.外键 二.表连接 三.子查询 四.索引 一.外键: 1.什么是外键 2.外键语法 3.外键的条件 4.添加外键 5.删除外键 1.什么是外键: 主键:是唯一标识一条记录,不能有重复 ...

  8. MySQL数据库学习笔记----MySQL多表查询之外键、表连接、子查询、索引

    本章主要内容: 一.外键 二.表连接 三.子查询 四.索引 一.外键: 1.什么是外键 2.外键语法 3.外键的条件 4.添加外键 5.删除外键 1.什么是外键: 主键:是唯一标识一条记录,不能有重复 ...

  9. SQL学习笔记五之MySQL索引原理与慢查询优化

    阅读目录 一 介绍 二 索引的原理 三 索引的数据结构 四 聚集索引与辅助索引 五 MySQL索引管理 六 测试索引 七 正确使用索引 八 联合索引与覆盖索引 九 查询优化神器-explain 十 慢 ...

随机推荐

  1. 【USACO 2&period;4】The Tamworth Two

    题意:C代表cows,F代表farmer,一开始都向北,每分钟前进1步,如果前方不能走,则这分钟顺时针转90°,问多少步能相遇,或者是否不可能相遇,10*10的地图. 题解:dfs,记录状态,C和F的 ...

  2. Windows7 系统 CMD命令行,点阵字体不能改变大小以及中文乱码的问题

    之前装了oracle 11g后,发现开机速度竟然奇葩的达到了3分钟.经过旁边大神指点,说是因为oracle某个(具体不清楚)服务,在断网的时候会不断的ping网络,导致速度变慢.然后就关服务呗,然后一 ...

  3. MySQL中DATE&lowbar;FORMATE函数内置字符集解析

    今天帮同事处理一个SQL(简化过后的)执行报错: 代码如下 复制代码 mysql> select date_format('2013-11-19','Y-m-d') > timediff( ...

  4. Windows使用WxWidgets开发界面(c&plus;&plus;)环境搭建

    一直想学习wxWidgets,之前使用的都是wxPython,现在终于鼓起勇气学习这个了,发现原来是基于vc6.0开发的.所以最好的学习办法就是安装vistual studio 2010,方便学习看代 ...

  5. react按需加载&lpar;getComponent优美写法&rpar;&comma;并指定输出模块名称解决缓存&lpar;getComponent与chunkFilename&rpar;

    react配合webpack进行按需加载的方法很简单,Route的component改为getComponent,组件用require.ensure的方式获取,并在webpack中配置chunkFil ...

  6. js调用&period;net后台事件,和后台调用前台等方法总结&lpar;转帖&rpar;

    js调用.net后台事件,和后台调用前台等方法总结 原文来自:http://hi.baidu.com/xiaowei0705/blog/item/4d56163f5e4bf616bba16725.ht ...

  7. &lbrack;leetcode&rsqb;Palindrome Partitioning &commat; Python

    原题地址:https://oj.leetcode.com/problems/palindrome-partitioning/ 题意: Given a string s, partition s suc ...

  8. 圆形CD绘制 &lpar;扇形&rpar;

    参考: Egret教程Arc是使用示例:http://edn.egret.com/cn/article/index/id/673 我封装的工具类: /** * 圆形进度 * @author chenk ...

  9. Java读写锁&lpar;ReentrantReadWriteLock&rpar;学习

    什么是读写锁 平时,我们常见的synchronized和Reentrantlock基本上都是排他锁,这些锁在同一时刻只允许一个线程进行访问,哪怕是读操作.而读写锁是维护了一对锁(一个读锁和一个写锁), ...

  10. 刷题向》关于搜索&plus;tarjan的奇怪组合题 BZOJ1194 (normal&plus;)

    关于这道题,其实看懂了的话还是比较好写的,只是题目实在又臭又长,没有让人读下去的勇气. 给出题目翻译: 给你S张图, 每张图有M个点,其中M个点中有N个是特殊单位,会给出. 每个点又有0.1两条边指向 ...