Let's denote a kk-step ladder as the following structure: exactly k+2k+2 wooden planks, of which
- two planks of length at least k+1k+1 — the base of the ladder;
- kk planks of length at least 11 — the steps of the ladder;
Note that neither the base planks, nor the steps planks are required to be equal.
For example, ladders 11 and 33 are correct 22-step ladders and ladder 22 is a correct 11-step ladder. On the first picture the lengths of planks are [3,3][3,3] for the base and [1][1] for the step. On the second picture lengths are [3,3][3,3] for the base and [2][2] for the step. On the third picture lengths are [3,4][3,4] for the base and [2,3][2,3] for the steps.
You have nn planks. The length of the ii-th planks is aiai. You don't have a saw, so you can't cut the planks you have. Though you have a hammer and nails, so you can assemble the improvised "ladder" from the planks.
The question is: what is the maximum number kk such that you can choose some subset of the given planks and assemble a kk-step ladder using them?
The first line contains a single integer TT (1≤T≤1001≤T≤100) — the number of queries. The queries are independent.
Each query consists of two lines. The first line contains a single integer nn (2≤n≤1052≤n≤105) — the number of planks you have.
The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1051≤ai≤105) — the lengths of the corresponding planks.
It's guaranteed that the total number of planks from all queries doesn't exceed 105105.
Print TT integers — one per query. The ii-th integer is the maximum number kk, such that you can choose some subset of the planks given in the ii-th query and assemble a kk-step ladder using them.
Print 00 if you can't make even 11-step ladder from the given set of planks.
4
4
1 3 1 3
3
3 3 2
5
2 3 3 4 2
3
1 1 2
2
1
2
0
Examples for the queries 1−31−3 are shown at the image in the legend section.
The Russian meme to express the quality of the ladders:
题解: n 个木棍,搭建 k 步梯的条件:
1.有 k + 2个木头
2.k + 2 个木头中选取最大的两个基地
3.剩下的有多少个木头小于基地中最小的木头。
核心方程:min(a[n-1]-1,min(a[n-2]-1,n-2))
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
int main()
{
int T,a[];
while(~scanf(" %d",&T))
{
memset(a,,sizeof(a));
while(T--)
{
int n;
scanf(" %d",&n);
for(int i = ; i < n; i++)
scanf("%d",&a[i]);
sort(a,a+n);
cout<<min(a[n-]-,min(a[n-]-,n-))<<endl;
}
}
return ;
}
standard output
There are nn pillars aligned in a row and numbered from 11 to nn.
Initially each pillar contains exactly one disk. The ii-th pillar contains a disk having radius aiai.
You can move these disks from one pillar to another. You can take a disk from pillar ii and place it on top of pillar jj if all these conditions are met:
- there is no other pillar between pillars ii and jj. Formally, it means that |i−j|=1|i−j|=1;
- pillar ii contains exactly one disk;
- either pillar jj contains no disks, or the topmost disk on pillar jj has radius strictly greater than the radius of the disk you move.
When you place a disk on a pillar that already has some disks on it, you put the new disk on top of previously placed disks, so the new disk will be used to check the third condition if you try to place another disk on the same pillar.
You may take any disk and place it on other pillar any number of times, provided that every time you do it, all three aforementioned conditions are met. Now you wonder, is it possible to place all nn disks on the same pillar simultaneously?
The first line contains one integer nn (3≤n≤2⋅1053≤n≤2⋅105) — the number of pillars.
The second line contains nn integers a1a1, a2a2, ..., aiai (1≤ai≤n1≤ai≤n), where aiai is the radius of the disk initially placed on the ii-th pillar. All numbers aiai are distinct.
Print YES if it is possible to place all the disks on the same pillar simultaneously, and NO otherwise. You may print each letter in any case (YES, yes, Yes will all be recognized as positive answer, NO, no and nO will all be recognized as negative answer).
4
1 3 4 2
YES
3
3 1 2
NO
In the first case it is possible to place all disks on pillar 33 using the following sequence of actions:
- take the disk with radius 33 from pillar 22 and place it on top of pillar 33;
- take the disk with radius 11 from pillar 11 and place it on top of pillar 22;
- take the disk with radius 22 from pillar 44 and place it on top of pillar 33;
- take the disk with radius 11 from pillar 22 and place it on top of pillar 33;
题解:n 个盘子从 i 移动到 j,题目限制条件:
1. i 与 j 要相邻;
2.呈现逐渐递减的趋势
若能够满足上述两个条件,输出"YES",反之输出"NO".
#include <cstring>
#include <cmath>
#include <cstdio>
#include <cctype>
#include <cstdlib>
#include <ctime>
#include <vector>
#include <iostream>
#include <string>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#include <complex>
#include <stack>
#include <bitset>
#include <iomanip>
#include <list>
#if __cplusplus >= 201103L
#include <unordered_map>
#include <unordered_set>
#endif // __cplusplus
#define ll long long
#define ull unsigned long long
using namespace std;
const double clf = 1e-;
const int INF = 0x7fffffff;
const int MMAX = 0xfffffff;
const int mod = 1e9 + ;
int arr[];
int main()
{
ios::sync_with_stdio(false);
cin.tie();
cout.tie();
int n,position,MAXX = -;
cin>>n;
for(int i = ; i <= n; i++)
{
cin>>arr[i];
if(arr[i] > MAXX)
{
MAXX = arr[i];
position = i;
}
}
for(int i = position; i <= n; i++)
if(arr[i] < arr[i+])
{
printf("NO\n");
return ;
}
for(int i = position; i > ; i--)
if(arr[i] < arr[i-])
{
printf("NO\n");
return ;
}
printf("YES\n");
return ;
}
You are given a sorted array a1,a2,…,ana1,a2,…,an (for each index i>1i>1 condition ai≥ai−1ai≥ai−1 holds) and an integer kk.
You are asked to divide this array into kk non-empty consecutive subarrays. Every element in the array should be included in exactly one subarray.
Let max(i)max(i) be equal to the maximum in the ii-th subarray, and min(i)min(i) be equal to the minimum in the ii-th subarray. The cost of division is equal to ∑i=1k(max(i)−min(i))∑i=1k(max(i)−min(i)). For example, if a=[2,4,5,5,8,11,19]a=[2,4,5,5,8,11,19] and we divide it into 33 subarrays in the following way: [2,4],[5,5],[8,11,19][2,4],[5,5],[8,11,19], then the cost of division is equal to (4−2)+(5−5)+(19−8)=13(4−2)+(5−5)+(19−8)=13.
Calculate the minimum cost you can obtain by dividing the array aa into kk non-empty consecutive subarrays.
The first line contains two integers nn and kk (1≤k≤n≤3⋅1051≤k≤n≤3⋅105).
The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1091≤ai≤109, ai≥ai−1ai≥ai−1).
Print the minimum cost you can obtain by dividing the array aa into kk nonempty consecutive subarrays.
6 3
4 8 15 16 23 42
12
4 4
1 3 3 7
0
8 1
1 1 2 3 5 8 13 21
20
In the first test we can divide array aa in the following way: [4,8,15,16],[23],[42][4,8,15,16],[23],[42].
题解:n 个数分解成 k 个区间,用区间最大值减去最小值,问:m 个数 k 个 区间的最小值。
差分乱搞
#include <iostream>
#include <cstdio>
#include <algorithm>
#define ll long long
using namespace std;
const int N = 3e5 + ;
int a[N],dis[N];
int main()
{
ios::sync_with_stdio(false);
cin.tie(); cout.tie();
int n,k;
cin>>n>>k;
for(int i = ; i < n; i++)
cin>>a[i];
for(int i = ; i < n - ; i++)
dis[i] = a[i+] - a[i];
sort(dis,dis+n-);
ll ans = ;
for(int i = ; i < n - k; i++)
ans += dis[i];
cout<<ans<<endl;
return ;
}
You are given an array a1,a2,…,ana1,a2,…,an and two integers mm and kk.
You can choose some subarray al,al+1,…,ar−1,aral,al+1,…,ar−1,ar.
The cost of subarray al,al+1,…,ar−1,aral,al+1,…,ar−1,ar is equal to ∑i=lrai−k⌈r−l+1m⌉∑i=lrai−k⌈r−l+1m⌉, where ⌈x⌉⌈x⌉ is the least integer greater than or equal to xx.
The cost of empty subarray is equal to zero.
For example, if m=3m=3, k=10k=10 and a=[2,−4,15,−3,4,8,3]a=[2,−4,15,−3,4,8,3], then the cost of some subarrays are:
- a3…a3:15−k⌈13⌉=15−10=5a3…a3:15−k⌈13⌉=15−10=5;
- a3…a4:(15−3)−k⌈23⌉=12−10=2a3…a4:(15−3)−k⌈23⌉=12−10=2;
- a3…a5:(15−3+4)−k⌈33⌉=16−10=6a3…a5:(15−3+4)−k⌈33⌉=16−10=6;
- a3…a6:(15−3+4+8)−k⌈43⌉=24−20=4a3…a6:(15−3+4+8)−k⌈43⌉=24−20=4;
- a3…a7:(15−3+4+8+3)−k⌈53⌉=27−20=7a3…a7:(15−3+4+8+3)−k⌈53⌉=27−20=7.
Your task is to find the maximum cost of some subarray (possibly empty) of array aa.
The first line contains three integers nn, mm, and kk (1≤n≤3⋅105,1≤m≤10,1≤k≤1091≤n≤3⋅105,1≤m≤10,1≤k≤109).
The second line contains nn integers a1,a2,…,ana1,a2,…,an (−109≤ai≤109−109≤ai≤109).
Print the maximum cost of some subarray of array aa.
7 3 10
2 -4 15 -3 4 8 3
7
5 2 1000
-13 -4 -9 -20 -11
0
题解:
1.确定状态:dp[ i ][ j ] 表示第 i 个数,长度为 j 的区间
2.状态转移方程:dp[ i ][ j ] = dp[ i - 1][ j - 1] + a[ i ]( j > 1)
dp[ i ][ j ] = max(dp[ i - 1][ m - 1 ] + a[ i ] - k,a[ i ] - k)(j == 1)
dp[ i ][ j ] = dp[ i - 1][ m - 1 ] + a[ i ];
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 3e5 + ;
const int inf = 0x3f3f3f3f;
ll dp[N][]; /*dp[i][j]代表的是以i为末尾位,长度对m取余等于j的这一段长度的计算和
*/
ll a[N];
int main()
{
ios::sync_with_stdio(false);
cin.tie();cout.tie();
int n,m,k;
cin>>n>>m>>k;
for(int i = ; i <= n; ++i)
cin>>a[i];
ll ans = ;
memset(dp,-inf,sizeof(dp));
if(m == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j < m; ++j)
{
dp[i][j] = max(dp[i - ][] + a[i] - k,a[i] - k);
ans = max(dp[i][j],ans);
}
}
}
else
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j < m; ++j)
{
if(j == )
dp[i][j] = dp[i - ][m - ] + a[i];
else if(j == ) /*j == 1代表现在末尾取到第i位的长度比之前取到i-1位多了一个余数1,由于向上去整,所以多剪掉了一个k,还得在加上一个a[i]*/
dp[i][j] = max(dp[i - ][] + a[i] - k,a[i] - k);
else
dp[i][j] = dp[i - ][j - ] + a[i];
ans = max(dp[i][j],ans);
}
}
}
cout<<ans<<endl;
return ;
}
Educational Codeforces Round 69 (Rated for Div. 2)的更多相关文章
-
Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code
Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code 题目链接 题意: 给出\(n\)个俄罗斯套娃,每个套娃都有一个\( ...
-
Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 背包dp
D. Yet Another Subarray Problem You are given an array \(a_1, a_2, \dots , a_n\) and two integers \( ...
-
Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting 水题
C. Array Splitting You are given a sorted array
-
Educational Codeforces Round 69 (Rated for Div. 2) A~D Sloution
A. DIY Wooden Ladder 题意:有一些不能切的木板,每个都有一个长度,要做一个*,求*的最大台阶数 做*的木板分为两种,两边的两条木板和中间的若干条台阶木板 台阶数为 $k$ 的 ...
-
Educational Codeforces Round 69 (Rated for Div. 2)D(DP,思维)
#include<bits/stdc++.h>using namespace std;int a[300007];long long sum[300007],tmp[300007],mx[ ...
-
Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting (思维)
题意:给你一个长度为\(n\)的升序序列,将这个序列分成\(k\)段,每一段的值为最大值和最小值的差,求\(k\)段值的最小和. 题解:其实每一段的最大值和最小值的差,其实就是这段元素的差分和,因为是 ...
-
Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 【数学+分块】
一.题目 D. Yet Another Subarray Problem 二.分析 公式的推导时参考的洛谷聚聚们的推导 重点是公式的推导,推导出公式后,分块是很容易想的.但是很容易写炸. 1 有些地方 ...
-
Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship
Problem Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...
-
Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
随机推荐
-
Java基础知识(贰)
一.面向对象 Java中的面向对象与C#的面向对象,本质都是一样.所以对于学过C#的同学理解Java中面向对象的概念就比较轻松. 对象 定义: 万物皆对象,客观存在的事物都称为对象. 1.面向对象 类 ...
-
java基础知识回顾之java Thread类学习(三)--java线程实现常见的两种方式实现好处:
总结:实现Runnable接口比继承Thread类更有优势: 1.因为java只能单继承,实现Runnable接口可以避免单继承的局限性 2.继承Thread类,多个线程不能处理或者共享同一个资源,但 ...
-
Android特效 五种Toast详解
Toast是Android中用来显示显示信息的一种机制,和Dialog不一样的是,Toast是没有焦点的,而且Toast显示的时间有限,过一定的时间就会自动消失.而且Toast主要用于向用户显示提示消 ...
-
开发教程(四) MIP组件平台使用说明
组件审核平台用于上传 MIP 组件.经过自动校验之后,提交审核,通过审核的组件会定时推送到线上,供网站使用. 平台地址:https://www.mipengine.org/platform/ 1. 使 ...
-
JAVA第十次作业
JAVA第十次作业 (一)学习总结 1.用思维导图对java多线程的学习内容进行总结. 参考资料: XMind. 2.下面是一个单线程实现的龟兔赛跑游戏. public class TortoiseH ...
-
使用jmeter 进行http 接口测试
前言: 本文主要针对http接口进行测试,使用Jmeter工具实现. Jmter工具设计之初是用于做性能测试的,它在实现对各种接口的调用方面已经做的比较成熟,因此,本次直接使用Jmeter工具来完成对 ...
-
Linux服务器后门自动化查杀教程
一.说明 如果出现文件上传漏洞和命令执行类漏洞(包括命令注入.缓冲区溢出.反序列化等)都会让人担心,系统是否系统已被上传webshell甚至植入木马程序.如果依靠人工排查,一是工作量大二是需要一定程度 ...
-
linux下搭建生成HLS所需的.ts和.m3u8文件
要想利用HLS来实现视频的在线播放,就得需要将一个完整的视频文件切割成多个ts视频流,然后利用m3u8的索引文件来播放. 在Mac下,苹果提供了streamingTools的工具,里面有mediafi ...
-
廖雪峰JavaScript练习题2
请把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字.输入:['adam', 'LISA', 'barT'],输出:['Adam', 'Lisa', 'Bart'] 肯定有更简单的方法, ...
-
百科知识 scm文件如何打开
用scplayer打开,目前有效的下载链接将是: http://download.csdn.net/download/kevingao/2686778