Number Sequence
Time Limit: 5000 MS Memory Limit: 32768 KB
64-bit integer IO format: %I64d , %I64u Java class name: Main
Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1
Source
大家都在看模板,而我没有模板,iwi,一值超时,哎,然而在每次判断时先判断下首尾是否相等就可以降低时间复杂度,区别就是
Time Limit Exceed和1076MS
方法一:
#include<stdio.h> #include<string.h> using namespace std; int a[1000050],b[10050]; int main() { int t,n,m,i,j,bj; scanf("%d",&t); while(t--) { scanf("%d",&n); scanf("%d",&m); for(i=1; i<=n; i++) scanf("%d",&a[i]); for(i=0; i<m; i++) scanf("%d",&b[i]); for(i=1; i<=n-m+1; i++)//a数组 { bj=1; if(a[i]==b[0]&&a[i+m-1]==b[m-1])//判首尾 { bj=0; for(j=0; j<m; j++)//匹配 if(a[i+j]!=b[j]) { bj=1; break; } if(bj==0) { printf("%d\n",i); break; } } } if(bj==1) printf("-1\n"); } }
f方法二KMP:
//引自kuangbin #include<stdio.h> #include<string.h> int next[1000010]; int b[1000010]; int a[10010]; int ans; //next[]的含义:x[i-next[i]...i-1]=x[0...next[i]-1] //next[i]为满足x[i-z...i-1]=x[0...z-1]的最大z值(就是x的自身匹配) void kmp_pre(int x[],int m,int next[]) { int i,j; j=next[0]=-1; i=0; while(i<m) { while(-1!=j&&x[i]!=x[j]) j=next[j]; next[++i]=++j; } } int KMP(int x[],int m,int y[],int n) {//x是模式串,y是主串 int i,j; int ans=-1; kmp_pre(x,m,next); i=j=0; while(i<n) { while(-1!=j&&y[i]!=x[j]) j=next[j]; i++;j++; if(j>=m) { ans=i-m+1;break; j=next[j]; } } return ans; } int main() { int t; scanf("%d",&t); while(t--) { int n,m; scanf("%d%d",&n,&m); for(int i=0;i<n;i++) scanf("%d",&b[i]); for(int i=0;i<m;i++) scanf("%d",&a[i]); int x=-1; x=KMP(a,m,b,n); printf("%d\n",x); } }
1076 MS |