Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
InputThe first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
OutputFor each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1Sample Output
6 -1
#include<iostream> #include<memory.h> #include<algorithm> #include<string.h> #include<stdio.h> using namespace std; //1000005 int f[1000005];int n,N,M; int P[1000005],T[1000005],s3[1000005]; int len1,len2; void getnext(){ int i = 0, j = -1; f[0] = -1; while (i < M) { if (j == -1 || P[i] == P[j]) { i++; j++; f[i] = j; } else j = f[j]; } } int kmp() { int i = 0, j = 0; getnext(); while (i < N) { if (j == -1 || T[i] == P[j]) { i++; j++; } else j = f[j]; if (j == M) { return i-j+1; } } return -1; } int main(){ cin>>n; while(n--){ memset(f,0,sizeof(f)); cin>>N>>M; for(int i=0;i<N;i++){ cin>>T[i]; } for(int i=0;i<M;i++){ cin>>P[i]; } printf("%d\n",kmp()); } return 0; }
一开始把匹配的字符串定义成了char,无限WA。。。还有数组不够大会TLE