[笔记] Convex Optimization 2015.10.21

时间:2022-01-11 21:53:35

int(K) : interior of K

  • Definition: Cone K is proper if it is closed, convex, pointed (contains no line), solid (nonempty interior)
    If K is proper, then K is proper, K={λ:λTx0xK}
  • Fact1: xkyλTxλTyλs.t.λK0
  • Proof: xkyxyKbecauseK=KλT(xy)0λK
  • Lemma: Let K be proper, then xint(K) if and only if λTx>0λK{0}
  • Proof: If xint(K) then obviously λTx0 for all λK{0} .
    If λK{0} and λTx=0 then there exists uRn such that λTu<0 , and x+tuK for t sufficiently small, a contradiction.
    Next, assume that λTx>0 for all λK{0} .
    Then xK=K , so xK .
    If xint(K) then (xi)i=1Ks.t.limixi=x .
    Since xiK , λiKs.t.λTixi<0 (for all i ).
    WLOG λi s are unit vectors.
    Then {λi:iN} lives inside a compact set (the unit ball of Rn ).
    So we can assume WLOG that λ1,λ2, is convergent: limiλi=λ .
    Then λK because K is closed and limi(λTxλTixi)=limi(λTxλTix)+limi(λTixλTixi)=0+0=0 .
    … contradiction!
    QED.
  • Fact2: xkyλTx>λTyλK{0}
  • Proof: xkyxyint(K)by lemmaλT(xy)>0λK{0}

Convex Functions:
- A function f:RnR is convex if and only if domf is convex and f(θx+(1θ)y)θf(x)+(1θ)f(y) for all x,ydomf and all 0<θ<1 .
- f:RnR is convex if and only if epi(f)Rn+1={(x,t):xdomf,tf(x)} is convex.

  • Example: f(x)=max(x1,,xn) is convex.
  • Proof: max(θx+(1θ)y)=maxi[θxi+(1θ)yi]θmaxixi+(1θ)maxjyj=θmax(x)+(1θ)max(y)

  • Observation: f is convex iff the restriction of f to every line is convex.
    Namely, f is convex if and only if the function g(t)=f(x+tu) from R to R is convex for every xdomf and uRn .

  • Derivatives: A function f:RnRm is differentiable at a point xint(domf) if and only if there exists a matrix "Df(x)"Rm×n such that f(x+z)=f(x)+Df(x)z+err(z) where limz0err(z)z2=0
    (Namely, limz0f(x+z)f(z)Df(x)zz2=0 )

  • Proposition: The derivative, if it exists, is unique.

  • Proof: Assume that A,BRm×n both satisfy the conditions of the derivative and that AB
    Snce AB there exists some vector uRns.t.AuBu , WLOG u is a unit vector.
    Then 0=limt0f(x+tu)f(x+tu)tu2=limt0f(x)+Atu+errA(tu)f(x)BtuerrB(tu)tu2=(AB)u+limt0errA(tu)errB(tu)tu2=(AB)u0

  • Example: Let f(x)=qTx+c for qRn,cR
    Then Df(x)=qT is the derivative.

  • Example 2: Let f(x)=xTPx for PSn
    Have f(x+z)f(x)=(xT+zT)P(x+z)xTPx=zTPx+xTPz+zTPz=2xTPz+zTPz
    so will have Df(x)=2xTP if we can show limz0zTPz2z2=0
    zTPz2z2Pz2z2P2z2

  • Example: Let f:Sn++R be defined by f(X)=log(detX) , ZSn

    f(X+Z)f(x)========logdet(X+Z)logdetXlogdet(X(I+X1Z))logdetXlogdetX+logdet(I+X1Z)logdetX(Let I=QQT,X1Z=Qdiag(λ1,cdots,λn)QT)logi=1n(1+λi)i=1nlog(1+λi)i=1nλi+o(λi)tr(X1Z)X1,Z

tr(BTA)=B,A

Second derivative (for functions of range R , m = 1)
f:RnR,Df(x)=f(x)T,D(Df(x)T)=D(f(x))Rn×n
f(x)=[fx1,,fxn]T
D(f(x))=2fx212fxnx12fx1xn2fx2n=2f′′(x)
means the Hessian of f .
f=f1fm
Df=f1x1fmx1f1xnfmxn

First order condition for convexities
- Fact: Assume f:RnR is differentiable (This means domf is open.)
Then f is convex iff domf is convex and f(y)f(x)+Df(x)(yx) for all x,ydomf
- Proof: Let x,ydomf , 0<θ<1 , z=θx+(1θ)y
We have, by f(y)f(x)+Df(x)(yx) ,
f(x)f(z)+Df(z)(xz) , f(y)f(z)+Df(z)(yz)
so θf(x)+(1θ)f(y)f(z)+θDf(z)x+(1θ)Df(z)yDf(z)z=f(z)convex
Fix x,ydomf and xy , Let g(t)=f(x+t(yx))=f(ty+(1t)x)
Then g(t)tf(y)+(1t)f(x) by convexity (for t[0,1] )
so f(x+t(yx))+(1t)f(x)tf(y)f(x+t(yx))f(x)t+f(x)f(y)
limt0Df(x)(t(yx))+errx(t(yx))t+f(x)f(y)
Df(x)(yx)+limt0errx(t(yx))t+f(x)f(y)
f(y)Df(x)(yx)+f(x)