- Definition: Cone
K is proper if it is closed, convex, pointed (contains no line), solid (nonempty interior)
IfK is proper, thenK∗ is proper,K∗={λ:λTx≥0∀x∈K} - Fact1:
x⪰ky⟺λTx≥λTy∀λs.t.λ⪰K∗0 - Proof:
x⪰ky⟺x−y∈K⟺becauseK∗∗=KλT(x−y)≥0∀λ∈K∗ - Lemma: Let
K be proper, thenx∈int(K) if and only ifλTx>0∀λ∈K∗∖{0} - Proof: If
x∈int(K) then obviouslyλTx≥0 for allλ∈K∗∖{0} .
Ifλ∈K∗∖{0} andλTx=0 then there existsu∈Rn such thatλTu<0 , andx+tu∈K fort sufficiently small, a contradiction.
Next, assume thatλTx>0 for allλ∈K∗∖{0} .
Thenx∈K∗∗=K , sox∈K .
Ifx∉int(K) then∃(xi)∞i=1∉Ks.t.limi→∞xi=x .
Sincexi∉K ,∃λi∈K∗s.t.λTixi<0 (for alli ).
WLOGλ′i s are unit vectors.
Then{λi:i∈N} lives inside a compact set (the unit ball ofRn ).
So we can assume WLOG thatλ1,λ2,⋯ is convergent:limi→∞λi=λ .
Thenλ∈K∗ becauseK∗ is closed andlimi→∞(λTx−λTixi)=limi→∞(λTx−λTix)+limi→∞(λTix−λTixi)=0+0=0 .
… contradiction!
QED. - Fact2:
x≻ky⟺λTx>λTy∀λ∈K∗∖{0} - Proof:
x≻ky⟺x−y∈int(K)⟺by lemmaλT(x−y)>0∀λ∈K∗∖{0}
Convex Functions:
- A function
-
- Example:
f(x)=max(x1,⋯,xn) is convex. Proof:
max(θx+(1−θ)y)=maxi[θxi+(1−θ)yi]≤θmaxixi+(1−θ)maxjyj=θmax(x)+(1−θ)max(y) Observation:
f is convex iff the restriction off to every line is convex.
Namely,f is convex if and only if the functiong(t)=f(x+tu) fromR toR is convex for everyx∈domf andu∈Rn .Derivatives: A function
f:Rn→Rm is differentiable at a pointx∈int(domf) if and only if there exists a matrix"Df(x)"∈Rm×n such thatf(x+z)=f(x)+Df(x)z+err(z) wherelimz→0err(z)∥z∥2=0
(Namely,limz→0f(x+z)−f(z)−Df(x)z∥z∥2=0 )Proposition: The derivative, if it exists, is unique.
Proof: Assume that
A,B∈Rm×n both satisfy the conditions of the derivative and thatA≠B
SnceA≠B there exists some vectoru∈Rns.t.Au≠Bu , WLOGu is a unit vector.
Then0=limt→0f(x+tu)−f(x+tu)∥tu∥2=limt→0f(x)+Atu+errA(tu)−f(x)−Btu−errB(tu)∥tu∥2=(A−B)u+limt→0errA(tu)−errB(tu)∥tu∥2=(A−B)u≠0 Example: Let
f(x)=qTx+c forq∈Rn,c∈R
ThenDf(x)=qT is the derivative.Example 2: Let
f(x)=xTPx forP∈Sn
Havef(x+z)−f(x)=(xT+zT)P(x+z)−xTPx=zTPx+xTPz+zTPz=2xTPz+zTPz
so will haveDf(x)=2xTP if we can showlimz→0∥zTPz∥2∥z∥2=0
∥zTPz∥2≤∥z∥2∥Pz∥2≤∥z∥2∥P∥2∥z∥2 -
Example: Let
f:Sn++→R be defined byf(X)=log(detX) ,Z∈Sn f(X+Z)−f(x)========logdet(X+Z)−logdetXlogdet(X(I+X−1Z))−logdetXlogdetX+logdet(I+X−1Z)−logdetX(Let I=QQT,X−1Z=Qdiag(λ1,cdots,λn)QT)log∏i=1n(1+λi)∑i=1nlog(1+λi)∑i=1nλi+o(λi)tr(X−1Z)⟨X−1,Z⟩
Second derivative (for functions of range
means the Hessian of
First order condition for convexities
- Fact: Assume
Then
- Proof:
We have, by
so
Then
so