Existen of SVD
For any
s.t.
- Proof:
such that
where
so
so
Let
- Dual norm:
∥z∥∗=max{xTz:∥x∥≤1} - Fact:
∥⋅∥∗∗=∥⋅∥ - Proof: Sufficient to show for
x s.t.∥x∥=1 .
∥x∥∗∗=max{zTx:∥z∥∗≤1}≤1
Still need to show that∥x∥∗∗≥1 - Claim: There exists a
z0 ,∥z0∥∗=1 , such that∥z0∥∗=xTz0 Proof of claim: Let
C={x} ,D={u:∥u∥<1}
ThenC andD are convex, disjoint.
So there existsa∈Rn∖{0},b∈R,s.t.aTx≥b,aTu≤b∀u∈D (⟹∥a∥∗=b )
Letz0=a∥a∥∗=ab ,
then∥z0∥∗=zT0x=∥a∥∗b=1 .Example: Let
A∈Sn++ , then∥x∥A=(xTAx)1/2 is the quadratic norm associated toA .
Have∥x∥A=∥A1/2x∥2 .
IfA=PDPT thenA1/2=PD1/2PT∈Sn++
∥w∥A∗=max{xTw:∥x∣A≤1}
=max{xTw:xTAx≤1}
=max{xTw:xTPDPTx≤1}
⟹u=D1/2PTxx=PD−1/2umax{(PD−1/2u)Tw:∥u∥2≤1}
=max{uTD−1/2PTw:∥u∥2≤1}
=∥D−1/2PTw∥2∗
=∥D−1/2PTw∥2
=∥PTw∥D−1
=((PTw)TD−1PTw)1/2
=(wTPTD−1Pw)1/2
point-set topology