[笔记] Convex Optimization 2015.09.30

时间:2022-10-07 21:53:34

Let f(x)=2ATAx2ATb=0 , then x=(ATA)1ATb
(ATA)1AT is Moore-Penrose Pseudoinverse.

SVD(Singular value decomposition)
A=UΣVT,ARm×n,URm×r,ΣRr×r,VTRr×n,r=rank(A)
U is orthogonal basis of col(A) , VT is basis of row(A)
Ainv=VΣ1UT
Least Square Solution x=Ainvb

col(A) : subspace speened by colS of A , Axcol(A)
Projection: PA=UUT,U=[u1,u2,,un] , ui is column vector.
Projector: P2=P (特征向量只有1和0)
uTi is a basis vector in colA .
uTi(IPA)b=(uTiuTiUUT)b=0
UUTb=Ax=AAinvb

minAxb22+rx22
- Solution: Ax^=A(ATA+λI)1ATb=nj=1ujσ2jσ2j+λuTjb
- Definition: Convex cone C:x,yC,ax+byC,a,b0
Semidefinite cone
T: affine transform RnRd , [Rd×n][Rn]=[Rd]

Dual norm: z=max{zTxx1}

polar set of Q : QΔ={x<x,y>1,yQ}
(unit norm ball of ) Δ = (unit norm ball of )

Quadratic norm: zp=(zTPz)12=p12z,pSn++
Lp-norm: (ixip)1p,p1
Dual Lp-norm: 1p+1q=1