Let ∇f(x)=2ATAx−2ATb=0, then x=(ATA)−1ATb (ATA)−1AT is Moore-Penrose Pseudoinverse.
SVD(Singular value decomposition) A=UΣVT,A∈Rm×n,U∈Rm×r,Σ∈Rr×r,VT∈Rr×n,r=rank(A) U is orthogonal basis of col(A), VT is basis of row(A) Ainv=VΣ−1UT Least Square Solution x=Ainvb
col(A): subspace speened by colS of A, Ax∈col(A) Projection: PA=UUT,U=[u1,u2,⋯,un], ui is column vector. Projector: P2=P (特征向量只有1和0) uTi is a basis vector in colA. uTi(I−PA)b=(uTi−uTiUUT)b=0 UUTb=Ax=AAinvb