主要介绍了两种方法: 欧几里德距离 原理 :这是一种比较简单的计算相似度的方法,它们经过人们一对待评价的物品为坐标轴,然后将参与评价的人绘制到图上,并考查他们彼此间的距离远近。 sum = 相同item的差值的平方之和 total = 1 / (1 + sum) 使用一个0-1之间的值去评价相似度,返回1则表示两人具有一样的偏好
缺点:
此评价方法,会因为一个人的评价始终比另一个人的更为“严格“(从而导致评价始终相对偏低),而得出两都不相近的结论,即使他们的口味很相似也是如此。(当然,还是需要根据具体的应用场景)
critics = {'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,'Just My Luck': 1.5, 'Superman Returns': 5.0,
'The Night Listener': 3.0, 'You, Me and Dupree': 3.5},
'Michael Phillips': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,'The Night Listener': 4.5, 'Superman Returns': 4.0, 'you, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane': 4.5, 'You, Me and Dupree': 1.0, 'Superman Returns': 4.0}
}
from math import sqrt
#Returns a distance-based similarity score for person1 and person2
def sim_distance(prefs, person1, person2):
#Get the list of shared_items
si = {}
for item in prefs[person1]:
if item in prefs[person2]:
si[item] = 1
#if they have no ratings in common, return 0
if len(si) == 0: return 0
#Add up the squares of all the differences
sum_of_squares = sum([pow(prefs[person1][item] - prefs[person2][item], 2) for item in prefs[person1] if item in prefs[person2]])
return 1 / (1 + sum_of_squares)
critics = {'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,'Just My Luck': 1.5, 'Superman Returns': 5.0,
'The Night Listener': 3.0, 'You, Me and Dupree': 3.5},
'Michael Phillips': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,'The Night Listener': 4.5, 'Superman Returns': 4.0, 'you, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane': 4.5, 'You, Me and Dupree': 1.0, 'Superman Returns': 4.0}
}
from math import sqrt
#return the pearson correlation coefficient for p1 and p2
def sim_pearson(prefs, p1, p2):
#得到双方都曾评价过的物品列表
si = {}
for item in prefs[p1]:
if item in prefs[p2]: si[item] = 1
#得到列表元素的个数
n = len(si)
#如果两者没有共同之处,返回0
if n == 0: return 0
#对所有的偏好求和
sum1 = sum([prefs[p1][it] for it in si])
sum2 = sum([prefs[p2][it] for it in si])
#对所有的偏好求平方和
sum1Sq = sum([pow(prefs[p1][it], 2) for it in si])
sum2Sq = sum([pow(prefs[p2][it], 2) for it in si])
#求乘积和
psum = sum([prefs[p1][it] * prefs[p2][it] for it in si])
#计算皮尔逊评价值
num = psum -(sum2 * sum1 / n)
den = sqrt((sum1Sq - pow(sum1, 2) / n) * (sum2Sq - pow(sum2, 2)/ n))
if den == 0: return 0
r = num / den
return r
#从反眏偏好的字典中返回最为匹配者
#返回结果的个数和相似度函数均为可选参数
def topMatches(prefs, person, n = 5, similarity = sim_pearson):
scores = [(similarity(prefs, person, other),other)
for other in prefs if other!= person]
#对列表进行排序,评价值最高者排在最前面 (先从小到大排序,再反转,这样就可以把大的放置在前面)
scores.sort()
scores.reverse()
return scores[0:n]
相关的python学习知识sum函数的使用Definition:sum(sequence[, start])Type:Function of_builtin_module
sum(sequence[, start]) ->valuereturn the sum of a sequence of numbers(not strings) plus the value of parameter 'start'(which defaults to 0).when the sequence is empty, return start
这是官方文档的解释,对一个数列的元素求和,并返回一个值。不过,好像本节中的用法对于一个初学都来说,文档的解释也没太大的用。此处的用法是:sum1Sq = sum([pow(prefs[p1][it], 2) for it in si])
[pow(prefs[p1][it], 2) for it in si],产生一个sequence,对si这个List中的元素所对应的健值进行平方,组成一个新的 sequence,然后sum函数对这个sequence求和