前言
总结一下最近看的关于opencv图像几何变换的一些笔记.
这是原图:
1.平移
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import cv2
import numpy as np
img = cv2.imread( "image0.jpg" , 1 )
imginfo = img.shape
height = imginfo[ 0 ]
width = imginfo[ 1 ]
mode = imginfo[ 2 ]
dst = np.zeros(imginfo, np.uint8)
for i in range ( height ):
for j in range ( width - 100 ):
dst[i, j + 100 ] = img[i, j]
cv2.imshow( 'image' , dst)
cv2.waitkey( 0 )
|
demo很简单,就是将图像向右平移了100个像素.如图:
2.镜像
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import cv2
import numpy as np
img = cv2.imread( 'image0.jpg' , 1 )
cv2.imshow( 'src' , img)
imginfo = img.shape
height = imginfo[ 0 ]
width = imginfo[ 1 ]
deep = imginfo[ 2 ]
dst = np.zeros([height * 2 , width, deep], np.uint8)
for i in range ( height ):
for j in range ( width ):
dst[i,j] = img[i,j]
dst[height * 2 - i - 1 ,j] = img[i,j]
for i in range (width):
dst[height, i] = ( 0 , 0 , 255 )
cv2.imshow( 'image' , dst)
cv2.waitkey( 0 )
|
demo生成一个如下效果:
3.缩放
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import cv2
img = cv2.imread( "image0.jpg" , 1 )
imginfo = img.shape
print ( imginfo )
height = imginfo[ 0 ]
width = imginfo[ 1 ]
mode = imginfo[ 2 ]
# 1 放大 缩小 2 等比例 非等比例
dstheight = int (height * 0.5 )
dstweight = int (width * 0.5 )
# 最近邻域插值 双线性插值 像素关系重采样 立方插值
dst = cv2.resize(img, (dstweight,dstheight))
print (dst.shape)
cv2.imshow( 'image' , dst)
cv2.waitkey( 0 )
|
使用resize直接进行缩放操作,同时还可以使用邻域插值法进行缩放,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
# 1 info 2 空白模板 3 重新计算x, y
import cv2
import numpy as np
img = cv2.imread( 'image0.jpg' , 1 )
imginfo = img.shape # 先高度,后宽度
height = imginfo[ 0 ]
width = imginfo[ 1 ]
dstheight = int (height / 2 )
dstwidth = int (width / 2 )
dstimage = np.zeros([dstheight, dstwidth, 3 ], np.uint8)
for i in range ( dstheight ):
for j in range (dstwidth):
inew = i * ( height * 1.0 / dstheight )
jnew = j * ( width * 1.0 / dstwidth )
dstimage[i,j] = img[ int (inew), int (jnew)]
cv2.imshow( 'image' , dstimage)
cv2.waitkey( 0 )
|
4.旋转
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import cv2
img = cv2.imread( 'image0.jpg' , 1 )
cv2.imshow( 'src' , img)
imginfo = img.shape
height = imginfo[ 0 ]
width = imginfo[ 1 ]
deep = imginfo[ 2 ]
# 定义一个旋转矩阵
matrotate = cv2.getrotationmatrix2d((height * 0.5 , width * 0.5 ), 45 , 0.7 ) # mat rotate 1 center 2 angle 3 缩放系数
dst = cv2.warpaffine(img, matrotate, (height, width))
cv2.imshow( 'image' ,dst)
cv2.waitkey( 0 )
|
旋转需要先定义一个旋转矩阵,cv2.getrotationmatrix2d(),参数1:需要旋转的中心点.参数2:需要旋转的角度.参数三:需要缩放的比例.效果如下图:
5.仿射
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import cv2
import numpy as np
img = cv2.imread( 'image0.jpg' , 1 )
cv2.imshow( 'src' , img)
imginfo = img.shape
height = imginfo[ 0 ]
width = imginfo[ 1 ]
deep = imginfo[ 2 ]
# src 3 -> dst 3 (左上角, 左下角,右上角)
matsrc = np.float32([[ 0 , 0 ],[ 0 ,height - 1 ],[width - 1 , 0 ]]) # 需要注意的是 行列 和 坐标 是不一致的
matdst = np.float32([[ 50 , 50 ],[ 100 , height - 50 ],[width - 200 , 100 ]])
mataffine = cv2.getaffinetransform(matsrc,matdst) #mat 1 src 2 dst 形成组合矩阵
dst = cv2.warpaffine(img, mataffine,(height, width))
cv2.imshow( 'image' ,dst)
cv2.waitkey( 0 )
|
需要确定图像矩阵的三个点坐标,及(左上角, 左下角,右上角).定义两个矩阵,matsrc 为原图的三个点坐标,matdst为进行仿射的三个点坐标,通过cv2.getaffinetransform()形成组合矩阵.效果如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/missyougoon/article/details/81092512