题意:
有n * k块木板,每个木桶由k木板组成,每个木桶的容量定义为它最短的那块木板的长度。
任意两个木桶的容量v1,v2,满足|v1-v2| <= d。
问n个木桶容量的最大的和为多少,或者说明不可能做出这样的n个木桶。
思路:
贪心
要满足|v1-v2| <= d,那么就要满足最大的木桶容量和最小的木桶容量的差小于等于d。
所以先把木板长度排序,如果a[0] 到 a[0] + d这个范围内有大于等于n个木板,那么就存在合理的分配方案,因为可以把至少n个木板作为最短的木板。
然后就计算最大的和,如果a[0] 到 a[0] + d这个范围内刚好有n块木板,那么最大的和就是这n块木板长度的和;
如果大于n的话,那么就要考虑让每个木桶最小木板的长度尽可能的大,就是让每个最小木板尽选择数组后面的数字。
因为1块木板可以支配k - 1块木板,所以下一个木桶的最小长度就可以从a[k]开始,这样就让最小的尽量大了。
一个木板可以覆盖的区间长度是k,假设a[0] 到 a[0] + d这个范围内有sum块木板,那么多余的木板就是res = sum - n。
区间数量就是c = res / (k-1),设r = res % (k - 1),
当r = 0,那么就有c个完整的区间,前c个木桶的长度就是0*k,1*k,2*k . . . (c-1)*k,后n - c个木桶的容量的下标就从c * k到sum-1;
当r != 0,有c个完整的区间和一个不完整的区间,前c + 1个木桶的容量就是0 * k,1 * k,2 * k . . . c * k,后n - c - 1个木桶的容量的下标就从c * k + r + 1到sum - 1。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N = 1e5 + ;
long long a[N];
int main()
{
int n,k;
long long l;
scanf("%d%d%lld",&n,&k,&l);
for (int i = ;i < n * k;i++) scanf("%lld",&a[i]);
sort(a,a+n*k);
//printf("%lld\n",a[0] + l);
int pos = upper_bound(a,a+n*k,a[] + l) - a;
pos--;
//printf("%d\n",pos);
if (pos < n - ) puts("");
else
{
long long ans = ;
int sum = pos + ;
if (sum == n)
{
for (int i = ;i < n;i++) ans += a[i];
}
else
{
if (k == )
{
for (int i = ;i < n;i++) ans += a[i];
}
else
{
int c = (sum - n) / (k - );
int r = (sum - n) % (k - );
if (r)
{
for (int i = ;i <= c;i++)
{
ans += a[i*k];
}
n -= c + ;
for (int i = k * c + r + ;i <= pos;i++)
{
if (n == ) break;
ans += a[i];
n--;
}
}
else
{
for (int i = ;i < c;i++)
{
ans += a[i*k];
}
n -= c;
for (int i = k * c;i <= pos;i++)
{
if (n == ) break;
ans += a[i];
n--;
}
}
}
}
printf("%lld\n",ans);
}
return ;
}