ios GCD将异步转换为同步

时间:2023-12-18 18:13:44

  在开发中有时需要等网络请求完成之后拿到数据做一些操作,而且有时是同时好几个网络请求同时发起。这时会有对异步操作进行更进一步控制的场景,不单网络请求,有时一些其他本地文件,多张图片处理等可能都会遇到这种操作,GCD中就有很多这方面处理的api。

1. 利用并发队列和栅栏函数对异步操作进行控制。

  // 创建队列
dispatch_queue_t queue = dispatch_queue_create("task", DISPATCH_QUEUE_CONCURRENT);
// 添加任务
dispatch_async(queue, ^{
NSLog(@"1===task===%@", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"2===task===%@", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"3===task===%@", [NSThread currentThread]);
});
// 与dispatch_barrier_async区别就是它的block里代码是否在主线程执行
dispatch_barrier_sync(queue, ^{
NSLog(@"===barrier==%@", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"4===task===%@", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"5===task===%@", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"6===task===%@", [NSThread currentThread]);
});

  上述代码打印如下:

  ios GCD将异步转换为同步

  从打印可以看出  dispatch_barrier_sync 栅栏函数后 task 4,5,6 在 task1,2,3 执行完后才执行的。

2. 使用调度组进行分发操作  dispatch_group_t ,代码如下:

   dispatch_group_t group = dispatch_group_create();

     dispatch_group_enter(group);
dispatch_group_enter(group);
// 一个真实的网络请求
NSMutableDictionary *dict = [NSMutableDictionary dictionary];
dict[@"a"] = @"square";
dict[@"c"] = @"topic";
[MLNetService requestType:RequestTypeGet URL:kBaseUrl dict:dict sBlock:^(id result) {
NSLog(@"%@", result);
dispatch_group_leave(group);
} fBlcok:^(NSError *error) {
NSLog(@"%@", error);
dispatch_group_leave(group);
}]; // 一个真实的网络请求
NSMutableDictionary *dict2 = [NSMutableDictionary dictionary];
dict2[@"a"] = @"square";
dict2[@"c"] = @"topic";
[MLNetService requestType:RequestTypeGet URL:kBaseUrl dict:dict2 sBlock:^(id result) {
NSLog(@"%@", result);
dispatch_group_leave(group);
} fBlcok:^(NSError *error) {
NSLog(@"%@", error);
dispatch_group_leave(group);
}]; // dispatch_get_global_queue(0, 0)
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"任务完成==%@", [NSThread currentThread]);
});

  上述代码中 dispatch_group_enter 与 dispatch_group_leave 一定要成对出现。请求前调用 dispatch_group_enter,请求结束后调用 dispatch_group_leave ,只有当所有的 enter 都 leave后,dispatch_group_notify 的block才会执行。所以上面代码等两个网络请求结束后会打印任务完成。

3. 使用信号量  dispatch_semaphore_t  对并发进行控制

  信号量这里可以看作是资源标识,只有当它信号数大于0才可以往后面执行,它有三个对应的 api 。

   dispatch_semaphore_create 创建一个信号,并指定初始的信号数

   dispatch_semaphore_signal 使对应的信号数加1

   dispatch_semaphore_wait 使对应的信号数量减1,如果执行到这行代码时信号数量已经为0,那么在指定时间后才会去执行它后面的代码,指定时间为它的第二个参数,如果设置为  DISPATCH_TIME_FOREVER 将一直等待。

    dispatch_semaphore_t semaphore = dispatch_semaphore_create();

    dispatch_queue_t queue = dispatch_queue_create("task", DISPATCH_QUEUE_CONCURRENT);
dispatch_async(queue, ^{
NSLog(@"1===task===%@", [NSThread currentThread]); dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)( * NSEC_PER_SEC)), queue, ^{
dispatch_semaphore_signal(semaphore);
});
}); dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
dispatch_async(queue, ^{
NSLog(@"2===task===%@", [NSThread currentThread]);
});

  上述代码打印结果如下

  ios GCD将异步转换为同步

  上面信号量代码中一开始创建  semaphore 信号数就是0,所以 dispatch_semaphore_wait 后面的代码要等到信号数不为0才会去执行,在 task1 执行完毕后用 dispatch_semaphore_signal 给信号数加1,所以 task2 代码就被执行了。