本文实例为大家分享了TensorFlow实现创建分类器的具体代码,供大家参考,具体内容如下
创建一个iris数据集的分类器。
加载样本数据集,实现一个简单的二值分类器来预测一朵花是否为山鸢尾。iris数据集有三类花,但这里仅预测是否是山鸢尾。导入iris数据集和工具库,相应地对原数据集进行转换。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
# Combining Everything Together
#----------------------------------
# This file will perform binary classification on the
# iris dataset. We will only predict if a flower is
# I.setosa or not.
#
# We will create a simple binary classifier by creating a line
# and running everything through a sigmoid to get a binary predictor.
# The two features we will use are pedal length and pedal width.
#
# We will use batch training, but this can be easily
# adapted to stochastic training.
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()
# 导入iris数据集
# 根据目标数据是否为山鸢尾将其转换成1或者0。
# 由于iris数据集将山鸢尾标记为0,我们将其从0置为1,同时把其他物种标记为0。
# 本次训练只使用两种特征:花瓣长度和花瓣宽度,这两个特征在x-value的第三列和第四列
# iris.target = {0, 1, 2}, where '0' is setosa
# iris.data ~ [sepal.width, sepal.length, pedal.width, pedal.length]
iris = datasets.load_iris()
binary_target = np.array([ 1. if x = = 0 else 0. for x in iris.target])
iris_2d = np.array([[x[ 2 ], x[ 3 ]] for x in iris.data])
# 声明批量训练大小
batch_size = 20
# 初始化计算图
sess = tf.Session()
# 声明数据占位符
x1_data = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32)
x2_data = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32)
y_target = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32)
# 声明模型变量
# Create variables A and b (0 = x1 - A*x2 + b)
A = tf.Variable(tf.random_normal(shape = [ 1 , 1 ]))
b = tf.Variable(tf.random_normal(shape = [ 1 , 1 ]))
# 定义线性模型:
# 如果找到的数据点在直线以上,则将数据点代入x2-x1*A-b计算出的结果大于0;
# 同理找到的数据点在直线以下,则将数据点代入x2-x1*A-b计算出的结果小于0。
# x1 - A*x2 + b
my_mult = tf.matmul(x2_data, A)
my_add = tf.add(my_mult, b)
my_output = tf.subtract(x1_data, my_add)
# 增加TensorFlow的sigmoid交叉熵损失函数(cross entropy)
xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits = my_output, labels = y_target)
# 声明优化器方法
my_opt = tf.train.GradientDescentOptimizer( 0.05 )
train_step = my_opt.minimize(xentropy)
# 创建一个变量初始化操作
init = tf.global_variables_initializer()
sess.run(init)
# 运行迭代1000次
for i in range ( 1000 ):
rand_index = np.random.choice( len (iris_2d), size = batch_size)
# rand_x = np.transpose([iris_2d[rand_index]])
# 传入三种数据:花瓣长度、花瓣宽度和目标变量
rand_x = iris_2d[rand_index]
rand_x1 = np.array([[x[ 0 ]] for x in rand_x])
rand_x2 = np.array([[x[ 1 ]] for x in rand_x])
#rand_y = np.transpose([binary_target[rand_index]])
rand_y = np.array([[y] for y in binary_target[rand_index]])
sess.run(train_step, feed_dict = {x1_data: rand_x1, x2_data: rand_x2, y_target: rand_y})
if (i + 1 ) % 200 = = 0 :
print ( 'Step #' + str (i + 1 ) + ' A = ' + str (sess.run(A)) + ', b = ' + str (sess.run(b)))
# 绘图
# 获取斜率/截距
# Pull out slope/intercept
[[slope]] = sess.run(A)
[[intercept]] = sess.run(b)
# 创建拟合线
x = np.linspace( 0 , 3 , num = 50 )
ablineValues = []
for i in x:
ablineValues.append(slope * i + intercept)
# 绘制拟合曲线
setosa_x = [a[ 1 ] for i,a in enumerate (iris_2d) if binary_target[i] = = 1 ]
setosa_y = [a[ 0 ] for i,a in enumerate (iris_2d) if binary_target[i] = = 1 ]
non_setosa_x = [a[ 1 ] for i,a in enumerate (iris_2d) if binary_target[i] = = 0 ]
non_setosa_y = [a[ 0 ] for i,a in enumerate (iris_2d) if binary_target[i] = = 0 ]
plt.plot(setosa_x, setosa_y, 'rx' , ms = 10 , mew = 2 , label = 'setosa' )
plt.plot(non_setosa_x, non_setosa_y, 'ro' , label = 'Non-setosa' )
plt.plot(x, ablineValues, 'b-' )
plt.xlim([ 0.0 , 2.7 ])
plt.ylim([ 0.0 , 7.1 ])
plt.suptitle( 'Linear Separator For I.setosa' , fontsize = 20 )
plt.xlabel( 'Petal Length' )
plt.ylabel( 'Petal Width' )
plt.legend(loc = 'lower right' )
plt.show()
|
输出:
1
2
3
4
5
|
Step #200 A = [[ 8.70572948]], b = [[-3.46638322]]
Step #400 A = [[ 10.21302414]], b = [[-4.720438]]
Step #600 A = [[ 11.11844635]], b = [[-5.53361702]]
Step #800 A = [[ 11.86427212]], b = [[-6.0110755]]
Step #1000 A = [[ 12.49524498]], b = [[-6.29990339]]
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/lilongsy/article/details/79261129