实现效果
实现代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
from skimage import img_as_float
import matplotlib.pyplot as plt
from skimage import io
import numpy as np
import numpy.matlib
file_name = 'D:/2020121173119242.png' # 图片路径
img = io.imread(file_name)
img = img_as_float(img)
img_out = img.copy()
row, col, channel = img.shape
xx = np.arange (col)
yy = np.arange (row)
x_mask = numpy.matlib.repmat (xx, row, 1 )
y_mask = numpy.matlib.repmat (yy, col, 1 )
y_mask = np.transpose(y_mask)
center_y = (row - 1 ) / 2.0
center_x = (col - 1 ) / 2.0
R = np.sqrt((x_mask - center_x) * * 2 + (y_mask - center_y) * * 2 )
angle = np.arctan2(y_mask - center_y , x_mask - center_x)
Num = 20
arr = np.arange(Num)
for i in range (row):
for j in range (col):
R_arr = R[i, j] - arr
R_arr[R_arr < 0 ] = 0
new_x = R_arr * np.cos(angle[i,j]) + center_x
new_y = R_arr * np.sin(angle[i,j]) + center_y
int_x = new_x.astype( int )
int_y = new_y.astype( int )
int_x[int_x > col - 1 ] = col - 1
int_x[int_x < 0 ] = 0
int_y[int_y < 0 ] = 0
int_y[int_y > row - 1 ] = row - 1
img_out[i,j, 0 ] = img[int_y, int_x, 0 ]. sum () / Num
img_out[i,j, 1 ] = img[int_y, int_x, 1 ]. sum () / Num
img_out[i,j, 2 ] = img[int_y, int_x, 2 ]. sum () / Num
plt.figure( 1 )
plt.imshow(img)
plt.axis( 'off' )
plt.figure( 2 )
plt.imshow(img_out)
plt.axis( 'off' )
plt.show()
|
以上就是Python 实现 PS 滤镜中的径向模糊特效的详细内容,更多关于python 图片模糊滤镜的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/mtcnn/p/9412386.html