本文实例讲述了Python实现PS滤镜的旋转模糊功能。分享给大家供大家参考,具体如下:
这里用 Python 实现 PS 滤镜中的旋转模糊,具体的算法原理和效果可以参考附录相关介绍。Python代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
from skimage import img_as_float
import matplotlib.pyplot as plt
from skimage import io
import numpy as np
import numpy.matlib
file_name = 'D:/Visual Effects/PS Algorithm/4.jpg'
img = io.imread(file_name)
img = img_as_float(img)
img_out = img.copy()
row, col, channel = img.shape
xx = np.arange (col)
yy = np.arange (row)
x_mask = numpy.matlib.repmat (xx, row, 1 )
y_mask = numpy.matlib.repmat (yy, col, 1 )
y_mask = np.transpose(y_mask)
center_y = (row - 1 ) / 2.0
center_x = (col - 1 ) / 2.0
R = np.sqrt((x_mask - center_x) * * 2 + (y_mask - center_y) * * 2 )
angle = np.arctan2(y_mask - center_y , x_mask - center_x)
Num = 20
arr = ( np.arange(Num) + 1 ) / 100.0
for i in range (row):
for j in range (col):
T_angle = angle[i, j] + arr
new_x = R[i, j] * np.cos(T_angle) + center_x
new_y = R[i, j] * np.sin(T_angle) + center_y
int_x = new_x.astype( int )
int_y = new_y.astype( int )
int_x[int_x > col - 1 ] = col - 1
int_x[int_x < 0 ] = 0
int_y[int_y < 0 ] = 0
int_y[int_y > row - 1 ] = row - 1
img_out[i,j, 0 ] = img[int_y, int_x, 0 ]. sum () / Num
img_out[i,j, 1 ] = img[int_y, int_x, 1 ]. sum () / Num
img_out[i,j, 2 ] = img[int_y, int_x, 2 ]. sum () / Num
plt.figure( 1 )
plt.imshow(img)
plt.axis( 'off' )
plt.figure( 2 )
plt.imshow(img_out)
plt.axis( 'off' )
plt.show()
|
附:PS 滤镜——旋转模糊
这里给出灰度图像的模糊算法,彩色图像只要分别对三个通道做模糊即可。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
% % spin blur
% 旋转模糊
clc;
clear all ;
close all ;
I = imread( '4.jpg' );
I = double(I);
% % % I_new = I;
% % % for kk = 1 : 3
% % % I_new(:,:,kk) = Spin_blur_Fun(I(:,:,kk), 30 , 30 );
% % % end
% % % imshow(I_new / 255 )
Image = I;
Image = 0.2989 * I(:,:, 1 ) + 0.5870 * I(:,:, 2 ) + 0.1140 * I(:,:, 3 );
[row, col] = size(Image);
Image_new = Image;
Center_X = (col + 1 ) / 2 ;
Center_Y = (row + 1 ) / 2 ;
validPoint = 1 ;
angle = 5 ;
radian = angle * pi / 180 ;
radian2 = radian * radian;
Num = 30 ;
Num2 = Num * Num;
for i = 1 :row
for j = 1 :col
validPoint = 1 ;
x0 = j - Center_X;
y0 = Center_Y - i;
x1 = x0;
y1 = y0;
Sum_Pixel = Image(i,j);
for k = 1 :Num
x0 = x1;
y0 = y1;
% % % 逆时针
% x1 = x0 - radian * y0 / Num - radian2 * x0 / Num2;
% y1 = y0 + radian * x0 / Num - radian2 * y0 / Num2;
% % % 顺时针
x1 = x0 + radian * y0 / Num - radian2 * x0 / Num2;
y1 = y0 - radian * x0 / Num - radian2 * y0 / Num2;
x = floor(x1 + Center_X);
y = floor(Center_Y - y1);
if (x> 1 && x<col && y> 1 && y<row)
validPoint = validPoint + 1 ;
Sum_Pixel = Sum_Pixel + Image(y,x);
end
end
Image_new(i,j) = Sum_Pixel / validPoint;
end
end
imshow(Image_new / 255 );
|
原图
效果图
效果图
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://blog.csdn.net/matrix_space/article/details/78345382