本文用 Python 实现 PS 图像调整中的亮度调整,具体的算法原理和效果可以参考之前的博客:
http://www.zzvips.com/article/178695.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
import matplotlib.pyplot as plt
from skimage import io
file_name = 'D:/Image Processing/PS Algorithm/4.jpg' ;
img = io.imread(file_name)
Increment = - 10.0
img = img * 1.0
I = (img[:, :, 0 ] + img[:, :, 1 ] + img[:, :, 2 ]) / 3.0 + 0.001
mask_1 = I > 128.0
r = img [:, :, 0 ]
g = img [:, :, 1 ]
b = img [:, :, 2 ]
rhs = (r * 128.0 - (I - 128.0 ) * 256.0 ) / ( 256.0 - I)
ghs = (g * 128.0 - (I - 128.0 ) * 256.0 ) / ( 256.0 - I)
bhs = (b * 128.0 - (I - 128.0 ) * 256.0 ) / ( 256.0 - I)
rhs = rhs * mask_1 + (r * 128.0 / I) * ( 1 - mask_1)
ghs = ghs * mask_1 + (g * 128.0 / I) * ( 1 - mask_1)
bhs = bhs * mask_1 + (b * 128.0 / I) * ( 1 - mask_1)
I_new = I + Increment - 128.0
mask_2 = I_new > 0.0
R_new = rhs + ( 256.0 - rhs) * I_new / 128.0
G_new = ghs + ( 256.0 - ghs) * I_new / 128.0
B_new = bhs + ( 256.0 - bhs) * I_new / 128.0
R_new = R_new * mask_2 + (rhs + rhs * I_new / 128.0 ) * ( 1 - mask_2)
G_new = G_new * mask_2 + (ghs + ghs * I_new / 128.0 ) * ( 1 - mask_2)
B_new = B_new * mask_2 + (bhs + bhs * I_new / 128.0 ) * ( 1 - mask_2)
Img_out = img * 1.0
Img_out[:, :, 0 ] = R_new
Img_out[:, :, 1 ] = G_new
Img_out[:, :, 2 ] = B_new
Img_out = Img_out / 255.0
# 饱和处理
mask_1 = Img_out < 0
mask_2 = Img_out > 1
Img_out = Img_out * ( 1 - mask_1)
Img_out = Img_out * ( 1 - mask_2) + mask_2
plt.figure()
plt.imshow(img / 255.0 )
plt.axis( 'off' )
plt.figure( 2 )
plt.imshow(Img_out)
plt.axis( 'off' )
plt.figure( 3 )
plt.imshow(I / 255.0 , plt.cm.gray)
plt.axis( 'off' )
plt.show()
|
总结
以上所述是小编给大家介绍的Python实现 PS 图像调整中的亮度调整 ,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对服务器之家网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!