寿司餐厅
时间限制: 1 Sec 内存限制: 512 MB
提交: 6 解决: 3
[提交][状态][讨论版]
题目描述
Kiana 最近喜欢到一家非常美味的寿司餐厅用餐。
每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个代号 ai和美味度 di,i,不同种类的寿司有可能使用相同的代号。每种寿司的份数都是无限的,Kiana 也可以无限次取寿司来吃,但每种寿司每次只能取一份,且每次取走的寿司必须是按餐厅提供寿司的顺序连续的一段,即 Kiana 可以一次取走第 1,2种寿司各一份,也可以一次取走第 2,3种寿司各一份,但不可以一次取走第 1,3种寿司。
由于餐厅提供的寿司种类繁多,而不同种类的寿司之间相互会有影响:三文鱼寿司和鱿鱼寿司一起吃或许会很棒,但和水果寿司一起吃就可能会肚子痛。因此,Kiana 定义了一个综合美味度 di,j (i<j),表示在一次取的寿司中,如果包含了餐厅提供的从第i份到第j份的所有寿司,吃掉这次取的所有寿司后将获得的额外美味度。由于取寿司需要花费一些时间,所以我们认为分两次取来的寿司之间相互不会影响。注意在吃一次取的寿司时,不止一个综合美味度会被累加,比如若 Kiana 一次取走了第 1,2,3种寿司各一份,除了 d1,3以外,d1,2,d2,3也会被累加进总美味度中。
神奇的是,Kiana 的美食评判标准是有记忆性的,无论是单种寿司的美味度,还是多种寿司组合起来的综合美味度,在计入 Kiana 的总美味度时都只会被累加一次。比如,若 Kiana 某一次取走了第 1,2种寿司各一份,另一次取走了第 2,3种寿司各一份,那么这两次取寿司的总美味度为 d1,1+d2,2+d3,3+d1,2+d2,3,其中 d2,2只会计算一次。
奇怪的是,这家寿司餐厅的收费标准很不同寻常。具体来说,如果 Kiana 一共吃过了 c (c>0)种代号为x的寿司,则她需要为这些寿司付出 mx2+cx元钱,其中m是餐厅给出的一个常数。
现在 Kiana 想知道,在这家餐厅吃寿司,自己能获得的总美味度(包括所有吃掉的单种寿司的美味度和所有被累加的综合美味度)减去花费的总钱数的最大值是多少。由于她不会算,所以希望由你告诉她。
每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个代号 ai和美味度 di,i,不同种类的寿司有可能使用相同的代号。每种寿司的份数都是无限的,Kiana 也可以无限次取寿司来吃,但每种寿司每次只能取一份,且每次取走的寿司必须是按餐厅提供寿司的顺序连续的一段,即 Kiana 可以一次取走第 1,2种寿司各一份,也可以一次取走第 2,3种寿司各一份,但不可以一次取走第 1,3种寿司。
由于餐厅提供的寿司种类繁多,而不同种类的寿司之间相互会有影响:三文鱼寿司和鱿鱼寿司一起吃或许会很棒,但和水果寿司一起吃就可能会肚子痛。因此,Kiana 定义了一个综合美味度 di,j (i<j),表示在一次取的寿司中,如果包含了餐厅提供的从第i份到第j份的所有寿司,吃掉这次取的所有寿司后将获得的额外美味度。由于取寿司需要花费一些时间,所以我们认为分两次取来的寿司之间相互不会影响。注意在吃一次取的寿司时,不止一个综合美味度会被累加,比如若 Kiana 一次取走了第 1,2,3种寿司各一份,除了 d1,3以外,d1,2,d2,3也会被累加进总美味度中。
神奇的是,Kiana 的美食评判标准是有记忆性的,无论是单种寿司的美味度,还是多种寿司组合起来的综合美味度,在计入 Kiana 的总美味度时都只会被累加一次。比如,若 Kiana 某一次取走了第 1,2种寿司各一份,另一次取走了第 2,3种寿司各一份,那么这两次取寿司的总美味度为 d1,1+d2,2+d3,3+d1,2+d2,3,其中 d2,2只会计算一次。
奇怪的是,这家寿司餐厅的收费标准很不同寻常。具体来说,如果 Kiana 一共吃过了 c (c>0)种代号为x的寿司,则她需要为这些寿司付出 mx2+cx元钱,其中m是餐厅给出的一个常数。
现在 Kiana 想知道,在这家餐厅吃寿司,自己能获得的总美味度(包括所有吃掉的单种寿司的美味度和所有被累加的综合美味度)减去花费的总钱数的最大值是多少。由于她不会算,所以希望由你告诉她。
输入
第一行包含两个正整数 n,m,分别表示这家餐厅提供的寿司总数和计算寿司价格中使用的常数。
第二行包含n个正整数,其中第k个数 ak表示第k份寿司的代号。
接下来n行,第i行包含 n−i+1个整数,其中第j个数 di,i+j−1表示吃掉寿司能获得的相应的美味度,具体含义见问题描述。
第二行包含n个正整数,其中第k个数 ak表示第k份寿司的代号。
接下来n行,第i行包含 n−i+1个整数,其中第j个数 di,i+j−1表示吃掉寿司能获得的相应的美味度,具体含义见问题描述。
输出
输出共一行包含一个正整数,表示 Kiana 能获得的总美味度减去花费的总钱数的最大值。
样例输入
3 1
2 3 2
5 -10 15
-10 15
15
样例输出
12
提示
对于所有数据,保证 −500≤di,j≤500。
【题意】有n种寿司,每一种有无数个,每种寿司编号在有个编号,编号可能相同,现在吃寿司,你可以按照1~k在其中取一段连续的顺序吃,有一个额外美味 度,单独吃也有单独的美味度,每一种编号x的寿司吃完耗费m*x*x,问美味度-耗费最大值。
【分析】最大权闭合子图,指的是对于一张有向图,每个顶点都有一个权值,可正可负。有u->v,当你选择了u就必须选择v,现在要选择一些顶点,使得所得的权值最大。做法就是网络流,源点向所有正权值连边,边容量为顶点权值,所有负权值向汇点连边,边容量为权值的绝对值,,原图中边的容量为inf。跑网络流求最小割,然后答案为正权值之和-最小割。
对于出题人的数据,我们可以换个姿势来看:
5 -10 15
-10 15
15
可以看出每次选择都是一个直角三角形。
那么对于每个点(i,j) (j>i),如果它被选择,那么点(i,j-1)和点(i+1,j)也一定被选择,以此类推。
根据这个来建一个点权图。
对于点(i,j) (j>i),点权为d[i][j],并向点(i,j-1)和点(i+1,j)连边。
对于点(i,i),点权为d[i][i]-a[i],即收益减去费用,并向编号a[i]连边。
对于编号p,点权为-m*p*p。
所求为最大权闭合图,所以转化为网络流最小割来求。
具体建图方法不用像上面说的先建点权图,直接建立网络图即可
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 1e5+;
const int mod = 1e9+;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,m,k,f;
int a[],d[][],An=;
int num[][],cnt,ans;
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int s,t;
vector<Edge>edges;
vector<int> G[N];
bool vis[N];
int d[N];
int cur[N];
void init(){
for (int i=;i<=n+;i++)
G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));
int mm=edges.size();
G[from].push_back(mm-);
G[to].push_back(mm-);
}
bool BFS(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while (!q.empty()){
int x = q.front();q.pop();
for (int i = ;i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow){
vis[e.to]=;
d[e.to] = d[x]+;
q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a){
if (x==t || a==)
return a;
int flow = ,f;
for(int &i=cur[x];i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if (d[x]+ == d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[G[x][i]^].flow-=f;
flow+=f;
a-=f;
if (a==)
break;
}
}
return flow;
} int Maxflow(int s,int t){
this->s=s;
this->t=t;
int flow = ;
while (BFS()){
memset(cur,,sizeof(cur));
flow+=DFS(s,inf);
}
return flow;
}
}dc;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
int S=,T=1e5;
dc.init();
for(int i=;i<=An;i++){
dc.AddEdge(i,T,m*i*i);
}
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
scanf("%d",&d[i][j]);
num[i][j]=An+(++cnt);
}
}
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
if(i==j){
d[i][j]-=a[i];
dc.AddEdge(num[i][i],a[i],inf);
}
else{
dc.AddEdge(num[i][j],num[i][j-],inf);
dc.AddEdge(num[i][j],num[i+][j],inf);
}
if(d[i][j]<){
dc.AddEdge(num[i][j],T,-d[i][j]);
}
else {
dc.AddEdge(S,num[i][j],d[i][j]);
ans+=d[i][j];
}
}
}
printf("%d\n",ans-dc.Maxflow(S,T));
return ;
}