我们给大家带来了关于学习python中scikit-learn机器代码的相关具体实例,以下就是全部代码内容:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
# -*- coding: utf-8 -*-
import numpy
from sklearn import metrics
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn import linear_model
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn import cross_validation
from sklearn import preprocessing
#import iris_data
def load_data():
iris = load_iris()
x, y = iris.data, iris.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.20 , random_state = 42 )
return x_train,y_train,x_test,y_test
def train_clf3(train_data, train_tags):
clf = LinearSVC(C = 1100.0 ) #default with 'rbf'
clf.fit(train_data,train_tags)
return clf
def train_clf(train_data, train_tags):
clf = MultinomialNB(alpha = 0.01 )
print numpy.asarray(train_tags)
clf.fit(train_data, numpy.asarray(train_tags))
return clf
def evaluate(actual, pred):
m_precision = metrics.precision_score(actual, pred)
m_recall = metrics.recall_score(actual, pred)
print 'precision:{0:.3f}' . format (m_precision)
print 'recall:{0:0.3f}' . format (m_recall)
print 'f1-score:{0:.8f}' . format (metrics.f1_score(actual,pred));
x_train,y_train,x_test,y_test = load_data()
clf = train_clf(x_train, y_train)
pred = clf.predict(x_test)
evaluate(numpy.asarray(y_test), pred)
print metrics.classification_report(y_test, pred)
使用自定义数据
# coding: utf-8
import numpy
from sklearn import metrics
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
import codecs
from sklearn.ensemble import RandomForestClassifier
from sklearn import cross_validation
from sklearn import linear_model
train_corpus = [
'我们 我们 好孩子 认证 。 就是' ,
'我们 好孩子 认证 。 中国' ,
'我们 好孩子 认证 。 孤独' ,
'我们 好孩子 认证 。' ,
]
test_corpus = [
'我 菲律宾 韩国' ,
'我们 好孩子 认证 。 中国' ,
]
def input_data(train_file, test_file):
train_words = []
train_tags = []
test_words = []
test_tags = []
f1 = codecs. open (train_file, 'r' , 'utf-8' , 'ignore' )
for line in f1:
tks = line.split( ':' , 1 )
word_list = tks[ 1 ]
word_array = word_list[ 1 :( len (word_list) - 3 )].split( ", " )
train_words.append( " " .join(word_array))
train_tags.append(tks[ 0 ])
f2 = codecs. open (test_file, 'r' , 'utf-8' , 'ignore' )
for line in f2:
tks = line.split( ':' , 1 )
word_list = tks[ 1 ]
word_array = word_list[ 1 :( len (word_list) - 3 )].split( ", " )
test_words.append( " " .join(word_array))
test_tags.append(tks[ 0 ])
return train_words, train_tags, test_words, test_tags
def vectorize(train_words, test_words):
#v = HashingVectorizer(n_features=25000, non_negative=True)
v = HashingVectorizer(non_negative = True )
#v = CountVectorizer(min_df=1)
train_data = v.fit_transform(train_words)
test_data = v.fit_transform(test_words)
return train_data, test_data
def vectorize1(train_words, test_words):
tv = TfidfVectorizer(sublinear_tf = False ,use_idf = True );
train_data = tv.fit_transform(train_words);
tv2 = TfidfVectorizer(vocabulary = tv.vocabulary_);
test_data = tv2.fit_transform(test_words);
return train_data, test_data
def vectorize2(train_words, test_words):
count_v1 = CountVectorizer(stop_words = 'english' , max_df = 0.5 );
counts_train = count_v1.fit_transform(train_words);
count_v2 = CountVectorizer(vocabulary = count_v1.vocabulary_);
counts_test = count_v2.fit_transform(test_words);
tfidftransformer = TfidfTransformer();
train_data = tfidftransformer.fit(counts_train).transform(counts_train);
test_data = tfidftransformer.fit(counts_test).transform(counts_test);
return train_data, test_data
def evaluate(actual, pred):
m_precision = metrics.precision_score(actual, pred)
m_recall = metrics.recall_score(actual, pred)
print 'precision:{0:.3f}' . format (m_precision)
print 'recall:{0:0.3f}' . format (m_recall)
print 'f1-score:{0:.8f}' . format (metrics.f1_score(actual,pred));
def train_clf(train_data, train_tags):
clf = MultinomialNB(alpha = 0.01 )
clf.fit(train_data, numpy.asarray(train_tags))
return clf
def train_clf1(train_data, train_tags):
#KNN Classifier
clf = KNeighborsClassifier() #default with k=5
clf.fit(train_data, numpy.asarray(train_tags))
return clf
def train_clf2(train_data, train_tags):
clf = linear_model.LogisticRegression(C = 1e5 )
clf.fit(train_data,train_tags)
return clf
def train_clf3(train_data, train_tags):
clf = LinearSVC(C = 1100.0 ) #default with 'rbf'
clf.fit(train_data,train_tags)
return clf
def train_clf4(train_data, train_tags):
"""
随机森林,不可使用稀疏矩阵
"""
clf = RandomForestClassifier(n_estimators = 10 )
clf.fit(train_data.todense(),train_tags)
return clf
#使用codecs逐行读取
def codecs_read_label_line(filename):
label_list = []
f = codecs. open (filename, 'r' , 'utf-8' , 'ignore' )
line = f.readline()
while line:
#label_list.append(line[0:len(line)-2])
label_list.append(line[ 0 : len (line) - 1 ])
line = f.readline()
f.close()
return label_list
def save_test_features(test_url, test_label):
test_feature_list = codecs_read_label_line( 'test.dat' )
fw = open ( 'test_labeded.dat' , "w+" )
for (url,label) in zip (test_feature_list,test_label):
fw.write(url + '\t' + label)
fw.write( '\n' )
fw.close()
def main():
train_file = u '..\\file\\py_train.txt'
test_file = u '..\\file\\py_test.txt'
train_words, train_tags, test_words, test_tags = input_data(train_file, test_file)
#print len(train_words), len(train_tags), len(test_words), len(test_words),
train_data, test_data = vectorize1(train_words, test_words)
print type (train_data)
print train_data.shape
print test_data.shape
print test_data[ 0 ].shape
print numpy.asarray(test_data[ 0 ])
clf = train_clf3(train_data, train_tags)
scores = cross_validation.cross_val_score(
clf, train_data, train_tags, cv = 5 , scoring = "f1_weighted" )
print scores
#predicted = cross_validation.cross_val_predict(clf, train_data,train_tags, cv=5)
'''
'''
pred = clf.predict(test_data)
error_list = []
for (true_tag,predict_tag) in zip (test_tags,pred):
if true_tag ! = predict_tag:
print true_tag,predict_tag
error_list.append(true_tag + ' ' + predict_tag)
print len (error_list)
evaluate(numpy.asarray(test_tags), pred)
'''
#输出打标签结果
test_feature_list = codecs_read_label_line('test.dat')
save_test_features(test_feature_list, pred)
'''
if __name__ = = '__main__' :
main()
|
原文链接:https://blog.csdn.net/Yan456jie/article/details/52092987