hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

时间:2022-09-18 23:57:39

Special Fish

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2189    Accepted Submission(s): 826

Problem Description
There
is a kind of special fish in the East Lake where is closed to campus of
Wuhan University. It’s hard to say which gender of those fish are,
because every fish believes itself as a male, and it may attack one of
some other fish who is believed to be female by it.
A fish will spawn
after it has been attacked. Each fish can attack one other fish and can
only be attacked once. No matter a fish is attacked or not, it can
still try to attack another fish which is believed to be female by it.
There
is a value we assigned to each fish and the spawns that two fish
spawned also have a value which can be calculated by XOR operator
through the value of its parents.
We want to know the maximum possibility of the sum of the spawns.
 
Input
The
input consists of multiply test cases. The first line of each test case
contains an integer n (0 < n <= 100), which is the number of the
fish. The next line consists of n integers, indicating the value (0 <
value <= 100) of each fish. The next n lines, each line contains n
integers, represent a 01 matrix. The i-th fish believes the j-th fish is
female if and only if the value in row i and column j if 1.
The last test case is followed by a zero, which means the end of the input.
 
Output
Output the value for each test in a single line.
 
Sample Input
3
1 2 3
011
101
110
0
 
Sample Output
6
 
Author
momodi@whu
 
题意:现在有n条鱼,每条鱼有一个价值,然后给一个01矩阵,如果G[i][j]==1,那么第i条鱼可以攻击第j条鱼,获得的价值是V[i]XORV[j],每条鱼只能攻击和被攻击1次,问你最后获得的价值最大是多少?
题解1:很明显的二分图模型,KM算法算最优匹配即可,第二种解法才叫神...。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = ;
const int N = ;
int graph[N][N];
int lx[N], ly[N];
bool visitx[N], visity[N];
int slack[N];
int match[N];
int n,m;
bool Hungary(int u)
{
int temp;
visitx[u] = true;
for(int i = ; i <= n; ++i)
{
if(visity[i])
continue;
else
{
temp = lx[u] + ly[i] - graph[u][i];
if(temp == ) //相等子图
{
visity[i] = true;
if(match[i] == - || Hungary(match[i]))
{
match[i] = u;
return true;
}
}
else //松弛操作
slack[i] = min(slack[i], temp);
}
}
return false;
}
void KM()
{
int temp;
memset(match,-,sizeof(match));
memset(ly,,sizeof(ly));
memset(lx,,sizeof(lx));
for(int i =;i<=n;i++)
for(int j=;j<= n;j++)
lx[i] = max(lx[i], graph[i][j]);
for(int i = ; i <= n;i++)
{
for(int j = ; j <= n;j++)
slack[j] = INF;
while()
{
memset(visitx,false,sizeof(visitx));
memset(visity,false,sizeof(visity));
if(Hungary(i))
break;
else
{
temp = INF;
for(int j = ; j <= n; ++j)
if(!visity[j]) temp = min(temp, slack[j]);
for(int j = ; j <= n; ++j)
{
if(visitx[j]) lx[j] -= temp;
if(visity[j]) ly[j] += temp;
else slack[j] -= temp;
}
}
}
}
}
int v[N];
char mp[N][N];
int main(){
while(scanf("%d",&n)!=EOF,n){
for(int i=;i<=n;i++){
scanf("%d",&v[i]);
}
for(int i=;i<=n;i++){
scanf("%s",mp[i]+);
for(int j=;j<=n;j++){
if(mp[i][j]=='') graph[i][j] = v[i]^v[j];
else graph[i][j] = ;
}
}
KM();
int ans = ;
for(int i=;i<=n;i++){
if(match[i]!=-){
ans+=graph[match[i]][i];
}
}
printf("%d\n",ans);
}
}

题解2:最小费用最大流,这个题没有说要是最大流的情况下,他要的只是最小费用,而用传统的模板保证的是最大流然后再最小费用,然后这个题就被套路了.它没说每条鱼都要匹配,所以我们只要还要建一条边,让第i条鱼直接连到终点。来三张神图解释:

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAExAggDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopM0ZoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKjklWJGd2CIoySxwAPWgBx/OsvW/EuleGrZZ9W1K106FjhXupljDH0GTyfYVxmpeLNR8XOU0K5Om6MODqYjDTXP/AFwDcKn/AE0YHd/CMYY1tK8L6TpFy13DZo9+/wB++uCZbmT/AHpWyx/Ou6nhW1ebt5dTklW6RXzN0/GDwqP9XqE9wv8AftrC4mX/AL6SMirulfEvwvrV2lpaa5ZyXb/ctnlEcrfRGwx/AdxWb5wqrqNjZaxatbX9nBfWzfehuY1kQ/UHIrd4Wm9r/f8A8Aj21Ty/r5noQIOMUZryq0sNQ8KEP4cuyLVeW0i9cvbMPSNjloT9Mp/sd67rw34ptPE9rJJBvguIW8u4tJxtlgfGdrD9QRkEcgkVxVaEqavujeFVT0ejN2iiiuc3CiiigAooooAKKKKACiikoAWiiigBOlB6UVS1bVbXQ9Nur+9lW3tLaNpZZW6KoGSaEm3ZEt21ZHrGsWmhafNe6hcLbW0Q+aRvUnAAA5JJwABkkkAc1xN14w8R+IWP9kW0Og2Pa61SEy3Eg9VhDKI/YuxPqgqhFJc+JNQXWdVjeIqSbHT5DxaIRjcw6GVgTk/w52jjJbU83I4r16WGUVeSu/wRwzrOb0dkZj+HLy7O6+8U67dOevl3S2y/gIVTA/ySaVPDd3ac2XirXrVh033S3I/ETI+f89K0/Mo8yun2fT9DK6Ibbxd4k8PEf2pbweILEfeuNNiMN1GPUwsxWT3KMD6Ia7XR9bs9fsI77T7hbm2kzhlBBBHBVgeVYHgqQCCCCAa5DzayLk3Xh+/bWtIjZ5sg3tihwt7GBg4HQSgfdbjOApOCCOaphVNXjo/zNYVnHfVHrA6Udaz9F1e117S7XULKcXFrcRiSOQAjIIz0PIPseRWh0ryGmnZncnfVC0UUUFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJxivM/HGrnxJrsnhuFv+JZaosmpsv8Ay1duY7Yn0K/O47goOjmvQtQvItNsbi6mbZDBG0jsewAyTXi/guWSXQo7+5GLvU3fUZ88kNKd4X/gKlU+iivRwVLnk5vp+ZxYidko9zqxMAABwB2o8/61R88UeeK9vkOLmL3n/Wjz/rVHzxR54o5A5i95/wBayNWuLnRblNf0yN5b60TE1sg/4/LfOWiI7sOWQ9m46MwNnzxR54NJ0lJWa0EpeZ6Rpuo22s6dbX1nKs9rcxrNFKhyHRhkEfUGroHJrzb4O3vkQ65oLHjTb5ngHpBN+9UD2VmdQOwQV6TmvmasPZzcOx61OfPBMWiiisjUSqWp6pZ6JYT3+oXcFhZW6GSa4uZBHHGo6szEgAe5q5mvAP2nvDfihbJvFuk6np403QrBrn7DqFsZxHcI+4TRoW8suRhQzqxQKdmCxNa0oKpNRbtcxqTcIuSV7HsPhXxtoPjmxlvfD+r2es2schieWzmWQI4AJVsdDgg4PYj1qr498aJ4H0mC6FlNqd7d3UVlZWEDKr3EznhdzEBQFDOxPRUY84xXnvwaOPjJ8ZBnj+1LHj/uGWdc5+0V4tuhr1zHp0hFzoVitvZFTyNW1FjbwMP9qGDzpCP7swNbKlF1VFbWT+9df8zKVVqm297tfcz1PwF8VtL8aeA/+ErnA0PTozKs738yCKIRsVZ/NztKHGQ2cEEHitvwp410HxzYyXnh/V7PWbWOQwvLZzLIEcAEq2OhwQcHsR6189fFf4X6/wCBfh1o+o+H7/TodI8K6OHGn39sZxFcRncJo0J8suRhQzqxQKdmCxNdp8Ib6C0+Mfxk8+4jhX+1LE/vHCj/AJBlnzzRUp0uR1IvTX5WaVn94o1ZcyjJdvnpue4AZpScVky+KtFtziTVrFCezXKD+tcB8UviIkOhxP4a8S6el4swZxFcRSMy4Py4Oe+PyryKuJp0oOV726XV/wAzqckj1OvMviZf/wBreJtH8Og5to0Op3qj+LY6iBD7F8v/ANsa53wb+0VDKUtfEtuIX6fbbUbkPuydR9Vz9BUcWsweIPHninUrW4S5tt1taxTRnIKrF5mAfrMePUmu3KMTh8dU5qUruKvbquhx16i9nZdWdN5tHm1Q873o873r7HkODmL/AJtHm1Q873o873o9mHMX/No82qHne9Hne9Hsw5i/8NtQOj+LNW8PE4tLmP8AtW0U/wALM5W4Qe28o/1mb2r03qRXhk+qxaL488IX886W8LXM9lJK7bVCyQs2CfQtEv44r3MEEDHSvnMdFQrabtX/AK+49HDS5oNdmOHSloorgOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkPi1PJb/DLxTJF/rBptxtx6+W1ef6W0cem2iREGJYUCH22jFeseKNMXW/Dup2D523Fu8Rx1wQRXhHgzUHuPDFgswC3Nun2WdfSWImN/wDx5TX0GWWlCS63R5WL0mn5HU+aPajzR7VR8/3o8/3r3PZnBzF7zR7UeaPaqPn+9Hn+9Hsw5i95o9qPNHtVHz/ejz/ej2Ycx574i+PVj8HfiFqwkltla7sLYMtzuADK02CNvsRx7V1Vp8fvFmrW0Fzp+k6fPbTKHjkSOR1dT0KkOARUfhr4UaP8W08X3mqWiTRTXAsreRhniFdrMD2PmGQcegrzjRdV8TfsleIzp+o20mteBbiXhSoL2+T95D0B9uFb2PNfnGa0arxcpOq1HTa2lkl2Z9bl+ChjMOlTlap0i9mvJ9/I9Qb4r/ES5H7vTrePJ6pasce3LGoz42+KV0W8tGhyP4bROPzU17V4T8S6P4z0K11bRbmG9sbhd6Sxc/UHuGHQg8g9a3AqjsM1xrAqSv7WT+f+RySpyhJxldNHzyup/Fi7IBu519MW8S/yQV5d8ZPEPjmOCXwrrmu22k2+q2jM13rd+bWBlL7WVcI28jqV4wCvrX2xgZqCezhugBNEkqjkB1Brpw2DpUaiqScpW7ye5hUpOpHlUrHw7rHi+VPjh4h1Dw14tsr/AEbxTd2+1dH1RjLbCKwRXknjAACZtyN+4/eQd+JNG8Ga98S9R8JaLBcTNeSb/Gerzzu28PODDYoxPIZLaPBXtkdM19feNPAdh4y8JaxoR/4lqalaS2jXVsiiSNXUqSMj0JrF+F/wtfwFc6zqOo6qda1vVpUkubwwLCuERY0REXhVVVUAD69Sa9VwwzjKcY2lJJPVu6Wny8znjh5c3vO6u39//BPlz42+EtQ8NSR+GdS1LTrEalaGUX+r35t7cfPtKodjb3HUrxgFfWo7xtK8TftC6vd6ZrOl65p/iy9t47dtKvPOntfLsUQtNFt4TdAw3Bjy6DHPH3DPawXQxPCkoHOHUHFRxaXZRMHjtIUcdGVACK56dHCU6DoKlo7313btr+Bbw7c+ZS0uvw6fieMRfs1rwZNT/ALXP/Ef4WaV8NvCVzrd3dGWOHAYs2xFB/iY9gK+k+vvWT4m0bT9e0W6s9VjjlsJEPmrKBt245znjFeZPL8O4OMYJPvZaHaoRvZo/NLxX8VL/UomTw5A1tYs5Q6rNH98jqIlP8z69Bwa9i/ZTvpl0LWLa4uZLiUypc75mLM+7cpOT1/1f8qpaL4Lh+OPxB1q40OzW28KaFBJb6cgXakjgHa3Hqfm9htFdB8OPAusfDPwjo+saraG0zczWd4m4NsjkdfLckccOo+gcmteH8LTwmLXIvdkmr93p+bPps4o4TDZX7ClFKomnLW71Wz+R7F5/vR5/vWf5/vR5/vX6h7M/M+Y0PP96PP96z/P96PP96fsw5jQ8/3o8/3rP8/3o8/3pezDmMLxfod14y8R+HdEtJzG0jT3MijoUSPbz7bpFrW8J/EXWfhdqC6H4mjln0xTtjmIJeEe395fbqO3pW18GNPbX/FGreJmX/RIU/s6yY/xBWJkcezNx7hAe9ek+LvBWneMLBoLyJS+PlkxyDXwGc0FWxPtKL5ZxVr9/JrqevhoNU+bqzV03U7XV7KK7s50uLaUbkkQ5DCrg5zXzgv/AAkvwL1lniDX2iSvl4GJ2MPUf3W9/wA817d4P8Z6Z420xbvTpt2MCWFuJIm9GH9ehry6GK55eyqrlmunfzXdHbGV9HudFRRRXpFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAnejHNcz4x8d6Z4Kjtvthmub+7LLZ6ZZRGW6umGMiNB2GRudsIuQWZRzWT8PPigvjvVNe0q40a80HV9GljjubS7kil4kjWRGV4mZSCrDvkVXs5cvNbQz5483LfU7o5o6fSuI+Kvim/8ADuk6bZ6PLFDrms6hFp9pLNH5iwg5knlK5GdkEczgHgsqg8GuA+Hnx1vpfh5barrUUniLU72a6l06HTo4reW6sI5DtupPMkSOJAhjZmZgAWAGSQDpGjOUOZEOrGMuVnvNJXmHgj432fim8sLa90ufRDqJcafdtd213aXzLkukU0EjjeACdrbSQrEAhWx6eazlCUHaRpGamrobgHOa+fvGmkP4D8czkKV0bWn82N8fLFdcAqfQOAMf7QPdhWx8XvGvi/wxrDNp91DY6WUURu0SMxbv94HJ+navL7nxp4o+IksOi31/9uiuWEflG3iA+vCjp1rzKefU8vxSpuDbeltNfxOXEKNSPI9+h3Hn0efXP6zZ6z8OZFt9ejlurAj91qcSFyo9JQOf+BD8cdTPbalDewJPbzRzwuMrJGwZWHsRX6xQlTxEFOm7o8GalTlyzVmbPn0efWZ9oo+0V0+zM+c0/P71ma7qtxFDFZ6eok1e9bybSPGfmPVyP7qg5P4DqRWVceJ0e9/s/TYH1XVCdotrfkIf+mjdEH159Aa9b+F/wwl0GVta1t1utanUKMLhIE67EHYfqe9eRjcXTwsbby6L/M7MPRlWfl3Os8BeFofBfhaw0qHJWGMbmY5ZmPJYnuSckmrHivwjpvjLSptP1K3SeGVSpDrnrW4PrRya+Hk3Nty6n0cHyW5dLHxhqmgeLv2T/FMur+H1k1Xwhcvuu9PZiU2+v+yQOj9R3yK+n/hx8StC+Kfh6LV9CuhPE2FmgfiW3fHKOvY/oeoJFX/Gdzoll4evLjxDNb2+kxr++muThRkhQB6kkgADkkgAEmviDxJLrvwY+JlhrvgfR9W0iy1VZpYLW/RFS9ijKmQNAH8xBhwQrqrDttPA5lRqU05wV49vzt+Z731ijmKVPENRq7J9JdlLs+lz7/J96TIryPwF+0d4Y8a+AdW8RNIbG40ezku9S06RgZYVRSzFf76nGAR7AgHiuQ8G/GzxPpPiXVrPxYy6t5VvZR/2fptmqTR6pPG0zWURLhWVI9h3yFf4ixAFddKm60XOG35ng4hSwlX2NaLTW/l/w59GBqXrXkNh8e3WOO/1fwrfaT4feUQtrC31peQ27FgoEwhlYp8xALDcq5BYjnHrcciyorqQQwyCO4pSpyhv/X3ERnGexJSdqWipLIxjPHWvnz9rX4lXOlaHZ+B9DYya94hPlOkZ+aO3J2n6bzlfoH9K9u8U+IrLwl4ev9Z1CUQ2NlC00r+wGcD1J6AdyRXzJ+z34evfjB8R9Y+KGvxERvKY7CFuVRB8oA9lUbc9zuPeuWs3K1OO7/BdT2supxp82Mqq8YbLvLovluz2/wCCHw2tvhn4EsdMRQblk33EmMF3PJJ/z0xXYa7oNn4h0a6026hSS1uEKOhHBBFaJwn0pd3WumC5ElHoeRVqSrzlUm7t6s+Zb62vfAGrDRNXLtblttjqD8rKvaN2/vjoCfvcd+t37TnuK928TeFtO8XaZLY6lbpcQSKVIYZrxDXvgr4n8LuzeHL1dTsByLO+yzIPRXzkfjuHoBX1uCzSDioV9H3/AMzwK+DlF81PVdiD7T7ij7T7iuZnvvEensy3vhLUAy8E2rxyKfoWKfyohv8AxFfsq2XhLUWZuAbl441/EqXr3PrOGtfnX3o872dW9uR/czpvtPuKoWcN7461U6Ho5dU3bL2/j4WBf4kVv756cfd5PXArT0H4MeKPFLqfEN4ml6efvWliWVnHoz5yR9NvvmvcPCvhLTPB+mRWGmWyW8MYA+VcZrw8ZmlOKcKGr79j0aGDnJ81TRdifw54ftPDGjWum2USxW9ugRVUYAAGK1D0ozzQTivk27u7Pb2KWqaVa6zZyW13Es0LjBDCvB/Ffw71n4bat/bnhiaTylOWROfl7qR3HtX0IKbLCksbI6hkYYII61x18PDERtLdbNbp+TFKKe5554D+MuleKrFxfSxaVqEEZeeKeQJHtUZZ1Y9gOSDyPpzXaaJr+meJLFb3SNRtdUs3JC3FnOs0ZI64ZSRXzV8evhlqvhrxZB4v03S9F1Pw5C1ir2upmRxbzNdFJXEAwkhZZIdrOTsMbELkgjR+CvxB0rwz8VviX4dvNunxS635tvLwsW4wxgqey9OvT6d+iEHh8Op15pu9r7dt/PU5Y1pKpySR7f448bW3gfT7Weazu9Tu725W0stOsAhnupirPsTzHRBhEdiWZQAhOap+FPinoHivwJZ+Lluxpej3Cb/N1J0hEfOMM24r1HUMQeoJFePftD+Krm58QX8OnSkXOk2SaTYFDyNU1IhA6/7cFsrSf7s561yHiawfSXh8O2SwxHTdX03wjpJlhSdLF2slvLi5jjkDJ5rJIIwxU7RGMdWz6cMPGUE3vv8AL+rESryU3bbb5n1hofiPSvE1oLvR9Ts9UtScCeynWZM/7ykitLHJr5T0W8u/h58QNGKzLLeQ+KpPCmpXMUEcB1KGSx+2QSzLGqq0keVQMAOGb1NfVdc1WkqbVnozopVOdO+6H0UUVibhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSGgDxD9qL4XaP4t+HHifxBeyXyX2leHtQEYtrp4o5lERkCyopAcB0VgDxn6DEfwX5+M/xP/wC4b/6RRVZ/aI0Xx34msoNI8Ow3N14c1GxurPVoNOmtorl/MCqBuuEYBNhlGVw2SK8/hi+IHhDx7e+NY/D954Y0Ofy7jxAmoX1ncWwtbe3KM67F80MFRTw2Mg54r1KcXKjyua2dlfbVdPM82bUKvMovdX08t7+RoftBeILjV/EerWlhKRcWtvF4X08oeRqGoBZLlx/tw2aI6n/pow7muZ+KWhxaFbeJ9FjUQ21pbeFtHWPoBbSX7GVR/svuKt6hcHpxtfDDR7vxh8VdFXUoik2k28viHVY2/g1K/bzFhb/aggCRj/ZcV037R3h22sotQ1t1N5b6tZQWF7psE6w3Za3maa2urcsCpkidySrDBG3J+XaylWhh2oTaSXVuy3T3/rchxcoyqd7/AJf19xw/xC06z8Ka1r1vpdvHZQWPiHw5qFrDAoVY55tsExUDoTEDn1yfWvYfHHxysNAH2LR1XV9VKgFlOYYm9yPvH2H5ivmyPTfE/wAbLy20uz0zVoLFtRj1PU9X1qSEXV9JHEIoY9kAEccaKPujOWAbrkt9PeAfgvpvheOOe8UXd4ADlhwteNjqlXEONPDtKNtZb9ErL7r3NqCk7taJ/wDDnn+i/DnxD8RbxtY8SXMzR4JVX4467VXoo9hWx8Efh9cWus3mr6ja/Z2jYpDGeg55Ir3EKsa7VACjjFCqqDCjA9q4IZfRpyjNJ3jd3et2+r8zrUEncgvtOttTt2huYUmjYYKuM15T4g/Zx0K/uZbvSZp9Fu5DuL2khjBPqQOG/HNewYyKSvYp1alJ81OTT8hzhGorSVz5/k/Z68SxOFg8X3Xl990ULH82jJq5Zfs0m4kB1rxDqGoQ94fN2KfqFwD+Ne64zRj8K65Y/EyVnNnOsLRTvyI5rwl8PdD8FWiQaXYRQKo4KoBXS9aB0o6VxNuTuzpSS0QtFFFIo5bx54E0/wCIXh9tI1KW7hh8+K5jmsbh4JopI2DKyupBByOo9fXmvmfwN4fs9M8d/DrRo0L2FtrPi61jjlYudi320ZJ5JwOpr6L+K6+Kx4Kuj4LIGu+dDtGYw/leYvm+X5gKb9m7G4EZr5yvPAnxLjs9IuNJ8K69Z+JNKuNRvYNVl1LTXE095IZZTLHs27d+MBQMDIr08NzOFnJJNvRu3Rq551fSakottJbLzTsT/GH4LaB4X+KXhzWYrltO01zc6xq8MXCGytEEsrMO6lzAjDuJKr/s2+IPBHxt8Ia1pHjTT4Dr9/qk+tXNjqBwGyzFTGxxkJG2wqeQoIIIzU3jS/1X4i6wNP1ARjU9cvbbwxttz8i21ofP1KRf9l52Fs3+4tdH8aP2ebO01Xw74n0TwwviFNNuQ2o6NFMsJu4BDIFHzfK2JfKJU8MoZTkHFYyhKko06bSu7vp9z/rY9KFeGK554u7srR62tsmuqOf8Tabptza+JtI8H6XDY23jeC20fStPtIgiyWsRl+0amyjG1WE5RW/jEUB6MMfVWh2LaZpNnaO5keGJYyx7kCvgzTfibrl98TtaGjJ4z0HxhqblYoNRvdH8pWGfKgQy2jERjOFUPk5OCWJJ+6fCbas/h3TX1xYl1gwJ9rEH3PMwN232zmliGpJWkn87u+m5z06NSi/3kXG6urqyavuvvNnjigUhIUfSuK+L3xHtPhd4E1HXrkq0sa+XawscebM3CJ+fJ9ACe1cMmopyex10qcq0404K7bsjwz9pzxZd/Ebxto/wq0CUkPKk+qyxnIXuqH/dHzkepT0r6K8D+FLPwT4ZsNIsohFBbxKgA9hXhf7J/wAOrv7NfePNf3T61rUjTCSX7wRjuz7ZJz9MelfSPHOefeuejFu9SW7/AAR6uY1YU1HB0XeMN33l1f6IfS0lLXUeMFFFFAEbwxyfeRW+ooSGOP7qKv0FSUUAFFFFABRRRQAUUUUAeBftGfEuytnbwEywQXl3HY6hJfahqNtZ28MP2vOR5sitIQLaTIQMRlc/eFeQDUvDV18SvFVpPe2NyNbvpr+x1jTdTtrmJI0t0ZhKiSGRANj/ADFcZHvX2LrHhfSfEXl/2pplpqHl52faYVk2564yOK5Dxr8G9E8R+D9Y0jSbHTtCvL+2a2+2R2SthWI3IwUqSrDKsAwOGOCDg11qVCpT9hVj7r3+dtfwOGpRm5Oad/I+XPCOvw6P42+H1hrkVxNHFFJ4p1Zj8zRXN0PLtEYHndDbIEI9GGPSu8+Kf2fTvFN9qcd7YpFea/p/ivRZbq6jt4NQdLRLO4tY5XIQTBIt4ViM+Z6ByvpHhj4Bxw2mu3PiW8g1fxDrNz9puL22tzBGpCKiJGhZiqqiIoBYnA5JriNQ0vV/hPeTWl7ZRa34ZuW/fWV0geGQeuCCFb3/ADzXnV8XPB1+bl5qVktN139UZqjJQSfr/XyMTw7I3xP+Imj/AGB7a5kPiWXxVqgsblLqLT9loLO3tpJYy0bSsnzsqsdpXk8qW+tcZ4rkPhzqXhrVNESXw3BbWcAAElrDGsbQn+6yjp/I9q7AnFdMsRDEpTp/DbQ66VPkjve4tFFFQbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAnb0qhq2mWWraXd2OpW8N1p1zE8NxBOoaOSNgQysDwQQTnNZHi/x9pHgiz87UrkCVhmO2i+aST6D09zgV4rqPiDxb8Z7w2lnG+n6MTgwxk4Yert/F9OntXm1sbGlL2dJc0+y6ebfQzlJbblyXxh4T+FUN1ovw40a2+03DlpZoFzEH6ZHdz09unJ6U7wv8JdZ8bX/9seKbqV/MwxWQ/MR6ew9hxXoXgX4RaX4SjWWVBdXnUyOM4PtXehdowBx6VnHCzrz9rjJcz6Lov82KNO2/3dChonh+x8PWiW9lAkKKMZA5NadFFetsahRRRQAlBzQenNctrHxH8PaHePZTaiLnUEOGsbGN7q4X6xxhmX6kAU4xlJ2irkSlGKvJ2Oo/H9KM+9cK3xVVv9R4Y8QTp/fFtFH+kkin9KfF8XNCjP8AxMlv9DX/AJ66nZSQwj6y4Ma/iw/Q1q6FRdGR7WHc7jFFV7K+ttStI7m0uIrq3kG5JoXDow9QRwasGsNtGa7i0UUUxiUUtFAHGaR8JfCWgeK7vxJYaDZ2mt3TO813DEFZmc7nP1Y8k9zya7EqDwRmgelHTvTcpS1bJUUtEjxT46/s8ab8SrB7yyQWesxAtFPGMHPXB9R7VwXwh/aE1XwRq8fgb4nM1vPGRFaa1MflcdFEjHqP+mh/4F3NfVBrzP4wfBPR/ipo0kVxCsd6oJinQYZW9Qa5alJp89PSX4P1Paw2Mg4fVsUr0+neL7r9UekK4eMMrBlIzkdCK+R/iFfzftHfHe08LWTGXwp4dkP2p0PyTS5w59+RsHsHI61x2ofFr4gfs96FqngfVD9rt5Ld49K1GRyGtV4BKnuApOFP3TjBxxXv/wCyt8N7TwV8PLTUN8Vze6ogupLiNg4YMMgBh1AH9T3rDn9vJU7Wtq/8j01hv7KpSxV1Jy0g157vyaWlu57Lpunw6XYw2sCBIolCqAPSrWKM0tegfKN31CiiigBO3tSA+1KOlZGu+KNI8L26S6tqdtp0bnahuJQhkPooPLH2GTSSbdktRNpK7NbFAFcM/wAWLKTmx0XXdRXs8dg0Kt7gzFOPfv2zQvxYso/+P3Q9esF7tJp7TAfXyS9b+wqdmZe2h3O5J9RS8YrH0HxVpHimF5NJ1K21BIziQW8oZoz6MOqn2ODWx0rBpxdmrM1TTV0LRRRTGFFFFABSUtFABVLVdItdas3truFZYnGCGFXaKAPnjxV8PdZ+Gerf274Zmk8lTlkXkbe6sO49q9H+HPxX0/xzCLaXbZawg/eWpPD46shPUe3UfrXdzRJPG0cih0YYKkcGvGfiP8GmMx1jw8WtryM+ZsjJUgjnII6GvHnh54aTrYbZ7x6PzXZmTi46xPaelB6V458OvjUZbhNF8VYs9QU7Eu3G1JD6P2U+/Q+3f1m+v7XTbYz3VzFawDAMsrhFGenJ4rso4mnXg5Re26ejXqWpKSuXKKQHIyORS12FBRRRQAUUUUAFFFFABRRRQAUUUUAIOKzNc8Qaf4asTealeR2luCE3OeWY9FUDlmPZQCT2FReJvEVr4X0yW9uAztkRwwRDMk8h+7Gg7kn8ByTgAmuDtLW5vb8avrMi3GqFSI40OYbNT1jiH/oTn5m9hhR1UaDq6vY56tXk0W5oT+N/Eesk/wBjaTb6ZbH7t5rLMZCPUWyYOP8AedD6gdqzQeLLg5l8YPCfSz0+BF/8fDn9aueZS+bXpxoxjtFfdf8AM43Jy3k/y/IppceM7A7odesdTA/5Y3+n7C4/66ROu0++wjrx6aNj8TEtJlg8S2B0CViFW6Evn2Tn087auw/9dFTPGM1F5tJIySxsjqHRgVZWGQQeoIqZUIS3X3aDU5R2f36ndT3UVtA80siRwopZncgKoHUk+leO+NfjuXmbS/CUf226Y7TelMop/wBhf4vqePrXIePtF1SG607TIr65i8JNIqsrvmGyJ6E9/LzgDOQmey/d9i8D/C7SfCECOkS3F3jmZxn8q+VxVDFSqulH3Yd+r9Ox1xm6m2h514O+C994gvBq3ii4kkkkO8o7Fmb6k17dpWj2mi2q29nAkMSjACjFXAOKBwK1o4enh1y01b836vqbKKjsOoopM11FC0UUUAN6Cq2oahb6VZT3d3MkFtAhkklkOFRQMkk1Z4+leWeKdWPirxVJpyndo+kMpnUH5Z7zhlU+qxrtbHTcy90rajSdafL06mNWp7ON+pJqGp6l43Yl5brR9CP3LaJjDc3Q/vSsPmjU9kUhv7xGSgt6ZY2ej2iWtjaw2duvSKFAq/XA71H59Hn17saSiuWKsjzua7u9WX/Oo86qHn0efV+zHzFJtAOm3b3+gXB0W+Y73SIZtrg/9NYejZ6bl2v/ALVdj4T8XJ4h861uITY6tagGe0Zt2Ac4dG/jQ4OG4PBBAIIrm/PrK12O6jEOqaUANZscvbgtgTLxvhY/3XAA9iFbqornq4dVVrv0f+fkOFRwd1t2PX6KyvD2uWviTRbLU7Ji1tdRLKhYYYZHQjsR0I7EEVq14LTTsz0001dBRRRQUFFFJQA0gZqC7uYrG2luJ5FhgiQu8jnCqoGSSewAqxnvXzj+1r8RbtbKw+HmgsZNb15lW4EZ5jtycYPpvIP/AAFW9azqTVOLbOvCYZ4utGkna+77Jbv7jzey8MP+1v8AFbXdYuxJF4VskNnZLgruUZx+JyWPpuA7VPoeveLP2R/EX9najHPrPgK4l+6OWt8n7ydgfUcK3sea+lPg98O7X4a+B7DSYEHmqgaaTGC7nkk/U1v+K/COm+MdKm0/UrdJ4ZVKkOuetcqoPl5r2nvf+uh7VTNI+1dJrmoWUUn2XVdn1HeFvFeleM9DtdW0a9j1CwuF3RzRn8wR1BHQg8jvWz0zXxlqugeLv2UPFMur6AJNU8I3L7rrT2YlNvr/ALJA6P1HfIr6f+G/xL0P4p+HYtX0O6E0Zws0D4Etu+OUdex/Q9QSK2p1OZ8s1Z/1sefi8CqUVXoPmpvZ9V5NdH+Z15FAPegjOK5D4ieJ7jQdHhttOZV1jUpfstpuXIQkEvKR3CKGb0JAH8QrqhFzkoLdnkSkoRbZX8TeL7me+n0bQmVbqLC3eoOu6O0yM7VB4eUgggdFyC2eFbH0rQLPS7l7wCS81KUYl1C8fzbhx6bj0X0VcKOwFR6XZw6RZR2sG4ouSXkbc8jE5Z2PdmJJJPUk1aE+K96FFU1Zf8OeXKbm7s0POo86qHn0efWvsw5iDVNAstVnjuir2uoxDEWoWjmK4j9g45I9VOVPcGtfw34wurO+g0fX2DzTHZZ6mqhUuiATscDhJcAnA+VsErj7ozzPmqmp2kGr2MtrcAmN8co21kYHKspHIYEAgjkEA1lOiqis/wDhgjNwd0ep56GlxmuN+HXiafXNMmstRcPrGmyfZ7pgAvmjGY5gPR1IPHAbcP4a7IDFeDODpycXuj04SU4qSFoooqSwooooAKKKKACkIyKWigDzn4k/CnT/ABZayXUQS1vUUt5vQH614bq/inV7Pw5ceGNTmF/ZIwa1nVw5jKngBh1Xtjt29K+p9b0tNa0e8sHbalzE0TH2Iwa8O1H9m67UsbS+RvQMK+ezLB1q3vYaK5mrN3tddmtn+ZjUi3rE9C+DHigeI/A1oJH33Vn/AKLLk8/KPlP4rj8c1c1r4iWtpezadpNtLrupwnbLDbMFigb0lmPyof8AZGX/ANnFeO+B9C13Qtd1fRba/aHTCFjv7y1OGMg/5ZRN/C2D8zDlc4BDcp6ILix8OWltaQQmOMfu4La1iZ2bqcKigknqfzNfR5bhascNB4pWkltft1bOd1pfDEnk1HxpqWXfUtL0VD0gs7Vrlx9ZZGUH/v2P8IhbeKozuj8YzyN/duLC3ZPyVVP61H/wkbf9AnW//BTc/wDxFH/CRt/0Cdb/APBTc/8AxFeylTWit9yM7Se7f3suQeK/FmjEfbrGx1+2H3pdPY2txj2ikLIx/wC2i/T06vw74t0vxPDK9hclpYSFnt5UMc8DHoHjYBl9sjntkVxMfiOF5Y0mtr6zMjbEa8spYFZuu0F1AJ4PHtS6lpv2qeK9tLhrDVLcEQXsYyQD1Rx/Gh7qfqMEAjOWHhUV46Py2LVSdN66o9RPAoHNc14M8Wf8JJZypcRrbaraMIru1ByEbsynujDlT9QcEEDpMda8qcXCTjLdHbGSkrodRRRUlBRRUVxJ5MEj/wB1SaAPKNa1I+J/Hl3KTmw0I/ZLdezXLoGlk/4CjKg9MyetXfO964/wFctc+Gbe9fmW/klvXbuxlkZ8/kw/ACui84+tfWU6Ps4qPY8N1OZuXcz/ABt480X4d+HLnW/EF+mn6bb4DSsCSWPAVQOST6D3PQE18ra7/wAFJ9Es7+WPSfBl/qVoDhZ7i9W3Zh67Qj4/Oue/4KA6tqV54k8NaN5jrpK2bXQjBO15i7KSR3wqrj03H1o/ZI+CPw0+IXgu+l8Q2EWr+II7p1e2lunjaKHau1gqOCQST8x7jH19yngaVPDLFVk2m7WR7dLD0oYdYiqm79j3D4G/th+FvjZrMehx2d3omvSI0kdpcESRyhQWYJIAMkAE8gcCvePO968A8F/sneE/h58UrDxl4eubuyFqkwGmuwkjy8Zj4Y/MAAx4OTnv2r3Hzj615tWFLn/c3t5nmV5Uue9K9vMtXCR3dtLBMglhlUo6MMhlIwQfwrV+E+sSz6Vd6HdStNd6JMLUSuctLAVDQufU7GCk92RjWB5x9aqeF9Xh0T4olri4itbbUNJbzHlcIpaGUbck8ZxO3+RXmYumnRk301IpVOWa89D2avBtd+Pdz4g8V6h4c8IatoemahYNdozavBJez3MlszJMqW0UsZiQMrASSOC207UZcOfVbr4i+GLVW36/p2R1C3KMR+AJrxrx1rnhXV/iX4bbQHtJL6S31Wa7ktoSjSH7MoDM2BuPvXz2GrUJzcOZN2dte2p215NJcr6r8T1r4UeMpviD8OfD/iK5gS2udRs47iSKPO1WZQSBnnGTXhfx11m98WeMZbHTtQv7eW31Sx0HShZXksCrdn/Sr2dhGyh9kHlxruyFfcO5FSfBr9oXwr4J+AXh83f22d9O0pWljghySVj5UEkZJIwPeuM8P+Lk8NfFnTbbWbOTUb7w3pz3V+sJAX+1r9/tN2cnqFDRKvoCw46VpDE0KTqVeZWi7adHf+vvOec1OMYt72ueheM/j7rVq9oNGvraysXa4SBjok2q3V1HbP5c92yJPEscAcHHLM6jcvXA7jwD8bLPVNan8N+JLqxs/EEMUVzDNbMy2moW8q5jnhL9A3IKEkhlIBYYJ+b/AAb4+/4QTWfh7fy6cuowTfD22ikMshVFkSR/tHY85IyO3Fc5JFMPE3gCOWEm5tfhzo0V2zHmOTMp2t6N1OD/AHhUY+tCjQqSpxu4a7b3ffqZwrT5k77/AOR9/avqcWkaTeX8h/c20LzNj0UEn+VeM+CfMi8M2U1wQbu8DXtwR3lmYyv+RcgewFeUWni/xPb+Etb0+znuLrTTYzLJbv8AOqLsOdhP3T9OPUGvXNKuo5NMs2j4jMKFR7bRiujIMSsdQlVUHHVbhiKnNKJseeKPPFUfP96PP96+q5Dl5i954o88VR8/3o8/3o5A5i954o88VR8/3o8/3o5A5jZ+D955F34m0POY7S9+1wD0juB5jD/v55v4EV6Ua+RPEHxvvPhF8W57pNMOoaDNY2sOpGMHzIzvlKMh6Zw3Q8HAGRX0/wCEvF+j+OtCt9Y0S9jv7G4GVeNuVPdWHVWHcHkV8ni5Q+sygt1b8kfRUsLWp4WFeS92V7Na9dn2fkb9FFFcxIzoKTcMgZ5rkfineeJbDwRfzeE7Q3ut74VSNPL8xYjKgmeMSEIXWMuyhjjcBkN90/OXgq4l/wCFgeAtTl0+fSPEE+s6ppmqyS6g93PdCJOBLKQu7BAO0KFUjCgDAHRToe0i5X7/AIK+pzTq8klC3b87H1B4w8U2Hgrw1qOuanJ5VlYwtNI3c46KPUk4AHckV8q/syzRfFb4ta54z8QNImszr9psbS5gkRTbk7Q8LOoEiDAQMpONpz1pv7YPj+98feKdM+GHh2bLNcwx3kqEkfaJWCRqcfwxh97fXnG2u2+EM2j+GZPGvjmRHj8PaJDH4d0iKNdzm0swYljjH8bSTGTYB97zFA61z06Ua6c3f3XZebPbqVZ5fRjTjZSqK77qPS3a738rH0jlRxxTs5r4Y8S+JD4g/wCE/vr2zH/CWaILG8OvRXDl7e6kvNktrbsDgRQBVgyAN7JIWBJzX25pcrTaZayOdztEpJ9TiumtQdG13/Vk/wBTxKNb2t9P6vYZq+kWmt2MtreQrNBIMEMM18l+PfhT4l+AvihvGXw+d/sec3WnAFo5EzkqV7r7dR1XFfYIxjFRXVrHeW7wzIskbjBVhkGuGpBT3379j18Ji54WTtqno09mjzz4NfG3Q/jJovn2TfZNWgUfbNNlYGSE+o/vJnow/HB4rmNQ8Xad4x+KuqiyvI7pPD1qLFlT+CeSQmYfh5Ma59dwrxT47aDoXw2+Ij6p4O8TQaH4tsys8tiCUDbhuwSRsywIypOCDyOc1xPwa+JEk/xnub65RLVdfLLPHGfk84/NuGfVw2Bzjf1PWlg8X7HEQp1LNt2v6/qe1iMkjisLUxeHuopcyT3Vt15q2zPrvzxR54qj54o8/wB6+75D835i954o88VR8/3o8/3o5A5i954o88VR8/3o8/3o5A5iTw7f/wBlfFPT3BxFq9lJZyj1eI+ZEfyeYfiK9fzXzZ491bUNO1TwtLpKs2qrfuYSqB8D7PKGyD9avL8TfiRan97YxSYH/LS0I/Hgivj83xCw9dLkk7papXW9j0MLNqDVuv8AkfQw6U1iB3x9a+fh8cPG1txNolkwA6iKQH/0OvEdd8f6z8QdE8cTeL9Cu7bxBpnh2bVrK8nvMR2cyMq7bWBPljVS3EpZpGx8xAwo58HOOLb0cbW3Vnr2Ttc1q11TWzPvHA45rjde+LHhfwz4nttA1HUJIdTnaJQqWs0kUTSEiJZZlQxxFypCh2Ut2Bry3w5+0xMmgWMl74ekyLdS832vqcck5Tj868e8RfFC1XxH4e1vWbG4nW+e48eX9pEQWSIRmDTYyTgYFvGSR/fGcZOaMLWoYjmd3aPk1r03Qqlfkso/0j7kD5GcjFFfBvxE8afY/Es58Q6fba9qek6RbatrUt4k0jSSSJ5j29oVlUWyJHwhVGJP3sncW918A/Giw8GeJfFXgnxDqN1cnQ7mP7BeSq0zyWssMcsau/JZl3lNx5IQEkkknat7GlBzc1pv0tt/mEMQpSs1b+v+Ae/ijNcFD8bvBc2ANZ2kjPz28ox+OzFSX3xW8N3GmXJsfEFpHdmJjC0hxhscHDAd+xrzljMO/hqJ/NHVePc7c8dq5f4i+JZfC3ha4ubQK2oTMlrZq/IM0jBEJHcAtuPspryjwV8e7vSrs2PiaRL+3LYXULcAsn+8F4YfTke9dH8Rtct9e8Q+DI7K4ju7Fzc6gHjbcrFI/LU/gZunY+4rfLMTQx9VRg9Vunvoc9WqlBuO/wDnoO0XT49E0u3soneRYl+aSQ5aRics7HuzMSxPqTXH/GLwZP488L3emRzSwpc28lu8kMYkZN2MMFLKG5UAjI4JrsPOPrR5x9a+0nSU00+p5sZ8jTXQ+F/Ev7I0vh3R769bXrsvb2d1dok+lrGj+RbyTspYTsVysTAHaeSK8/8AhF8Hj8UzqWdSlsFtJIIgsFoLh5HlEhHBkQAARNk57jivuz4yyF/BerD/AKhGr/8Apruq+av2Nv3d3rh/6fbD/wBAu68KrQjCvGmtnY9KFVypubPRvgZ+zndfC7xHfXy6jdX32u3S1ZZ7JbdY1W4imLgiZyT+524wOHbnsfpnzveqPnH1o84+te1Sw8aatE4J1XN3ZW1DUj4X1/TPESHESSJY3y9nt5XChj7xuVfPZfMHevZAQRkd68T8RWo1bQNSsmAZbi2kix9VIr0r4eaw/iDwJoGpStvkurGGZm9SyAk/rXm4+lyqM/kdGFnq4/M6Oilorxz0QqtqCl7G4UdTGw/SrNNYBlIPQ8U1owPnT4fTGPwbpkDcNbIbVh6GNjGQfcbcV0Xn/SsC6tG8J+Otd0aQFIbqU6lZk9GV8CVR7h/mP/XQVf8AtHPWvuqSVWCmuup807wbg+h558ffgvb/ABk8PQJFMlprVgWe0uHB2Nkcxvj+EkDnkjHuQfiLxB4J8T/CvWYzqNpfaFexPmG7jLKpI7xyrwevY19n+O/2j/DPw38c2/h3XBc24lt1na+SPfFHknAYD5ug6gHqOKd4m+NPwv1jwrdjVNf0vUtLliO+2J3u46DCY3bs9DgY68da9/A4ythI+zcOaEujX5H0GDxeIw8VGUOaD8vyPL/gB+1HqV1rVl4Z8XXK3yXTrBa6owAkRzwqy4+8CcAN1BPOQcj6v8/6V+Vvgm3vPEHjfSLDSlZrue9jWEpzt+cYY8cAdSe2K/ULz/epzTD0adZOirJq9uxOb0qVGpF01bmWxfFxn0rk9R8IS/EL4i6fpi3HkQ2unSzOQM4LyIB/6A35Gts3A25JAFb3wKsG1KbW/FLqfL1CRYLNj3t4xhWHszF3Hs4r5PMYQ+rShUV1LSzPIw656iRUtv2b7BMedfO/0Fc1pX7MOteEPEF5qXh3WfDqSzSTsl5qegm4vFjlYlojKJl3KAdo4HygDtX0ZnJ6cUH1r4/Dwhhb+xilfR2SPYlRhO11sfGXij4M6f8ABfUdGvvEFzZDSL/UIXuItE0h7e0hjtVedVEas+ZJZVhTGRuUN/d59g+Anwttz4PPiDxJpyt4i1+4k1S9WUZMbysX8vnsoIUeyivapIkkTayhl9xmnooXgAADoBXbUrupGzWvV9zOnQjTldbdDwbxv+zfPqUkUGh3Hh86LDcS3VvpniDR2vRZyStumEDpNGQjsdxjcOuTjG0Kqwj9mieXWDqd/rDalqd4wfUL1kEfmEAKoRBwqqqhQB2A6nJP0CKCMmuatJ4in7OrrHsWqNNO6RyNt8PdK0rwxd6XbWy7ZoGjdsctkYPNeOeC7yQ+Hba1uD/pdgWsZ/XfEShP47Q30YV9H5wa8F+JOiP4H8XS61GpXQ9V2rdMPuwTjhZD6BhhSe2FPTJr2MqqxpzdJ6J7epy4um3FTXT8ifz/AHo8/wB6z/tPuKPtPuK+v9meNzmh5/vR5/vWf9p9xR9p9xR7MOc0PP8Aejz/AHrP+0+4rK1W5vNSng0PSmb+1b/5EdOfs8fRpT6YHT1bHbOMpxjCLlJ2SKi3J2W50/wz8F6f49sfFWo6lbJPa6hdG1h3DIMUI8vPuCwc+4IrybXvBvjD9lzxPL4g8JF9Q8NTNm70xyWjZB6+mOzDke4yK+svCnhy18KeHrDS7RBHBaxLGqj2FX9Q0231S0e3uYllicYKsM1+fYu2JqOps+nkfZ5fipYGPs2uaD3i9n/wezOP+Ffxd0L4uaCNR0e42zRgC5spMebbsezDuPRhwfwIHc+tfJXxR+BWu/DDxD/wmvw6nktbiIl5bWL7si5yylehB7qeD7GvVvgh+0LpXxZtfsF0o0nxRbj/AEjTZDjfjq8eeSPUdV78cnkhUfNyVNH+DO7E4OEoPE4N3h1XWPr5dmeh+MPFun+BtBm1jVWlWzjkhhxbwvNI8ksqxRIiICzM0kiKAB1avk7xhqPiLw7Z6Z4003wrrV55HiHW9QjtTp8gmjSVW8qSWLG5E7kkDge4r628T+GtM8XaFdaRrNjDqOmXIUS21wgZGwwZTj1DAEHsQD2r4ef4N+EPjD8e5dG8NaOlj4R0U+XdSW0jhblgfmJOeQWBA/2VJ716MK9KlHlle8nbTta3dbHk0sHVxMnUjblprmd723Vl82ZvgKK50nT73xw8327XRYHUoJpPmLahfu1tY59fvXDuOwdCcYBr6G1/4e6t4M+GvgHSdG0nUtZ0/SXMt5a6S1v9q84QMIJ8XDpG/lysJMMT86o2Dt4r6R8ANch8cW9vcW+mW/g+z1k6xHJbTu0txsgEFtC0RQCNYox2dwzfN8vSvosDbx0FauUMPGEKWqX9a/iznrTqY6rOtW0bfTpbt5Wsj4fsfD2ieFvBPjjTNdtfHWnvb6PYAxahBpguTB9rkMTQmKRkdzNu3GVhn1r6v+EV3r958OdCm8T26W+uG1T7THHjG7HXgkc+xxTvGXwn8JfEDUrK/wBf0K01O9sseRPNGC6ANuAz3AbkA9DzXWRRrFGEjG1FGAB2FFeuqq21bu/uS0MaNF0nvp/wSbFLSUtcZ1nlfxE/Z98MfEXU5NR1G1U3rqFMoXDEDpkjmvmvxb+zWvgv4m2EFhfPBayRC8tHB5WSJxuGTnPDKR/umvub9TXn/wAYfB03ifw/HdaeANX02QXNqx7sOqn2YEqfZjV4eFF1ourFNf1qdDx2MpUnCjUa8r6eljiknIRdx+bHNL5/vWHpWtx6tZidA0TglJYZOHicfeRh6j/644NXPtPuK/Qowvqj45z1NDz/AHo8/wB6z/tPuKPtPuKr2Yuc0PP96PP96z/tPuKp6rrcWkWT3Eu58EKkUfLyOeFRR3JPFS6dg5jZ8IW58QfFfT1A3QaPZvcyH0klOxB+CpJx/tCvdDDGw5RT9RXn/wAHPB0/hrQpb3UQP7Y1OQ3NyRztJ+6gPoqgKPYV6HnIr4fG1lWrNrZaI9/DU3Tgk93qVmsbd/vQRn6qK+W/iXfJ8WF8Waj4T0TU7qwfwdd2UNydOlhS7laZWQQ7lHm5VSRtz29RX1ZjNeU3v7L/AMMb67muJPCViJJXLsIwUXJOThQQB+FRh5wptyle/T+rjrwnUXLHbqcJrGveG/Gfwvt/Dek2ctpruo3kHhu4t7u0e2ubQvH5twxVwCCtqJZFP+7zWb4J+Glr8XfAXxG8TC0iefxPBdWejFhtSO0WEwWu3+6pVVfA7ua2vHf7PV/pU1tb/DrTNK03T59PvLGV5Ll4pbOW48tXukUIwlcRoUUFk27jywOB7h4N8NW3g/wvpmjWqLHBZQLCqoOOBitZzhTgvZPrfzMo05zk/adrHyTrmgHxqfFN/DoV/qU3jfw7b2umXUNszx2N6IWt5Y7phxCYmwzb9vRlGWGK7z4YeAtJ+J/j74geK5UafSbi7gsdOuFbKyxwQJEzqejKZFkIYcEYI616f4o/Z/8AAHjLWJ9U1fwxY3V9ckNcyBNv2ggYBlAwJOAB8wPQV3Gk6TaaHYRWVhbx2trEoVIo1wAKzrVac4cqW+mvy+/YqnRaleX9f1c8+n/Z/wDDsoO3zE+hrnvFHwN0XQdEvNQR7m4MEZcQpjc5HYV7eKZNEk8bRyKHRhgqRwa8eeEozTXIvuR1uKfQ+QfD3w81jxbdf6HZNBAT9984UfjXY6h4Db4c+J/CwM3mG6iu4HbsXKo+PriI/lX0VBaw2kYSGNY19FGK8++OOh3GoeEo9QsommvtJuEvYkT7zhT86j3ZCy/8CrTKcDh8BiI1Ir3nu35/gjlrUl7OXLv/AJHO+f8ASjz/AKVkWWqQ6jZw3VvIJYJkEiOvRlIyDU/n+9fpXszxec8+/aOvpLX4Q+MJ4X2TReGtekRh2YaPeEH8xXxJ/wAEvfE+o69f+Nxf3T3HlXelFN3bKX2f5Cvtr46aTeeJvhn4m0uxRJLy/wBE1ewt1kkWJGnuNNuYIVZ3IVAZJUG5iFGckgAmvlP9gL4AeN/gnf8Aiv8A4S/T7GxfUrnT3tRZ6vZ3+8RLd+YW+zTSbMebH9/Gd3GcHHgYinL65Cy7fmelSmvYS1Pv7z/pR5/0rP8AP96PP96972Z5vMS6tqQ0/S7y6JAEELyknttUn+lei/CSybTvhl4XtXUq0OnQIQeowgFeNeI0fX5LDw5AC8+rTLHIq/w26kGZj7Ffk+rivo60t0tLWKFRhUUKK+fzWSSjTW+56OCTblP5Fiiiivnz1QooooA8++KvgOTxZpsN5YsINZ09jLay44Jxgq3qrAkEe/qAa8k0vXV1ASRSRta38B2XFpJ9+Jv6g9mHBr6aArzr4ifCKy8YkX1nK2maxGD5d3BgN9D2IPHBBHtXsYDH/VnyVNY/kediMP7T3ob/AJnyp8dv2fNJ+L9xBqjanJo+rwRCET7Q8UiAkgMvHOT1B/A14JD+xjrbXmyTxVpC2/8AfVZS/wCRQD0719ZeKPDXjPw7d+XqWjtqltGMC8sCASPUoxxn6N+ArBOt2Uafvo9Qgf8Auvp07fqqmvusPj4OFqVVW7f8PsY08ZisLD2d2l6X/Ez/AILfs+eHvhGx1GGd9Y1qSPyzfTABUU9RGoztz0JyT9MkV64LmvNNM8Wy/aVj0/S9SvmfjyxbtGD75fGK9F8P/C7xZ40dW1Vh4e0w/egtnJmkHo0mBj6KAfc1x4nGUaV5VJ3f3s5Jxr4mpzSu2+rMO/1uz8QarBoK6hHaW003kX13u4jXvGD2J4BP8IJ79Pp/RtMt9F0u2srRFS3hQIgUcYArzzxB8CtEuPDcVlpkC2lxbpiN1GM/WuP8E/EXU/hpqK+H/E4kfTFOyG4IJaAf1T26jt6V+Z4/M6zxDddfu38LXTyfr3PVo0lh1Z9ep9B0VXtLuG9t457eVJoJFDJJGwKsD0IIqxWiakro7QoopKoBaKKKACqGs6Na69ps9jeRLNbzKVZWGRg1fooA+avFXgzW/hpK3kW8+teH/wCAx/NPbD05++o9M5HbPAGXpniaw1gEWl3HK6/eiziRPZkPzKfYivqSWJJkKSKHU9QwyK4LxV8D/CvipzJc6ekU/USxjDKfUHtX0OFzeVJclZXXfqeTWwKk703by6Hk5uTTJ9QjtomlmlSGNeryMFA/E110n7MWmK4FvrWrQRj+FL+ZR+QetHSf2afCtlcrPdrNqTryPtchkwfbcTivTlnWHS92Lv8AI5FgKt9Wvx/yPLrHW73xTdCz8MWjanKx2m9IItY/fd/H9F49xXuHw1+GUPgyCS6upTfaxc4M91JyT6AegHYDgV1ukaDYaHbiGyto4EHZVrR/GvnsXmFTFe7tHt/mepQwsKOu77i0UUV5h2kM0STRsjqGVhgg96+cfjh+zcdSuh4n8Iyvpev2zCZGt2KEsOQcjkH3H619JYyOlVNRvrfSbC4u7uVILW3jaWWSQ4VFUZJPsAKznCNSNpbHThcRWw1VTovX8/Jrqj421n9rHxInw71Lwrq2nT2njtttlHdxIFV1bhpMD7r44G3glgRjGK92/Zu+FUfwz8CWyyxr/al2BNcv33EdPoOB+FfM1v8ADrUv2pPiD4n8WWkkmm6TEDb2Me3AZV+7kev8R93IzxXo3wr+P2tfCzWY/BXxMEi26HyrPW5cnC9AJD/Ev+11H8XHI8+lLllzVHdbJ/5+vc+vxtBVKDw+FSjO/NOK6u3Tul26M+s6Kgt7iK7hSaGRZYpFDpIhBVlPIII6ip69Q+H2CiiigAooooAKQgEYPIpaKAPG/iT8Krpb6bxB4Z2peuM3NkxxHcgevo3ow5+o4rzGDxfbrc/ZNRV9H1AHBtr3CFj/ALDdG/A59QK+sCK53xN4A0LxbA0epafFPuGCSozXs4TNJ4dck1zR/Feh59fCRqvmi7M8J+04o+05rsLn9mDQAzGwvb7T1J4S2upIlX2AVhiktv2YNAJX7ffX+oKOqXF1JIrexDMc17n9tYe3wv8AD/M876hWvuvx/wAjzm48X2v2j7JYB9W1AnAtbLDsD/tHoo+p+gNelfDb4VXlxfQeIPE4U3KfNa2CnMdvkdf9pv8AaI+mBxXoPhr4e6D4RiVNN0+GDHQhRmukrw8Zmk8QuSC5Y/iz0KGDjTfNJ3YAAAAcAU6iivGPRCkxS0UAFFFFACUtFFABRRRQBU1HULfSrKe8upVgtoVLySP0UDvXD3Pxt8ETwOjasZFYYK/ZJufzSpviZ478P+HtJuLLU5Dcz3EZX7DCQZGB/vdlHufwzXzFqlnK8X28WYsbSR9sSev49/rXzmY5hUw7aw1pNLVWbt6tOyMZza+E6ltf0nQdZuotNuXuPDs0hkjlaJkFm7Ekq2RwhOSD2OR0Ix0QuQcEEEH3rsvhD8NrWLwc76pbLJJfjcyuOi9hXLeJfgzr3hOR5/C8y32mg5GmXROEHpG4yV+mCPQCvv8AJ80nKhCON0lbdbej/wAzyq+En8cPu/yK7ThxggEehpqOiHKoqn2rlZ/E13pcnlaroWp2Ew67YfOQ/Qrz+YFRf8J5p7ZEcWoyv/dXTpwf/HkAr6+NSjJcymreqPManF2af3HZfaKqanrlvpNt51w+ATtRFG55GPRVXqSfQVj6b/wk/ip1j0Xw/NGj8C61E7FHvsXJP0JWvVfAPwTj0W8TVteuW1bVQPkMgASHPZFHA/mcDJNebisww9BWi+aXZf5nVRw1Wq9VZeY74QeBru2ml8TazHs1O7QJDbtz9mhzkIPfnJPc+wGPWKaqhQABgD0pfWvi6tWVabnPdnvwgqcVGOw6iiisjUKKKKACiiigCOVEdD5ihl7gjNY97o9hdZH2CE/7RQZraZdwpBGKadgMGz8N2kEi+XaxIAc5CAV0AGKAMdKWm5NjbuJXLeOPAVh40094riMLcAfJKByDXU9KKxlFTTjJXTEfLsHj3XfgTrsmg3EUOoWbxPdBL67W0traIMFM8k7/ACxIGZQeCTn5VJr1f4XfErVvFniLxRoOu6ZY2OpaHLArSabdPPBKksKSqQXRCCA+Dx2rF/ah+Gvhvxh8KPFWsatpVtearpOh38tjdyRgyQMIGb5T9VBryDTPGWr+BP2hvHepWkTXOmPHpsdzB/C3+hxc57Hng0Rp0MFhG4pu133tqtvJI4HKdOrZvT9Lf5nvnxl8Q3On2GkaLp+oSaVeazeiKS+hYK9rZxKZrqUEghf3cZjDfwtMprzDwB8adY0P4X211eTf2xqN3Hc6xDJrt0YEsdL80+U9zKsbMzbSqqqoWdgegBIwfil4wT4o6hqD6Q0hi1IweDdO3LhlM+LnVH/78JFHkcB4zyc034waTFo8/i/TwuyC2/4RG1CgcC3GoMQPpvaTivXoxhOnFb3s/wAUt+2v4GUqknJyi/L8L/oekeAP2gJtbuNLXWrbTfsGp3bWFrqelzTgJdBDIILi3nijkhZkBZSdwYYPG5N3t4PFfJ3xX8u28SeJhaqEI1zww0QUYHn7l3/j5IX8MV9W25JhjJ67Rn8q58RTjG0oq1/8k/1OmhKTvGTvb/MlooorkOsKKKSgBaKKKACiiigAooooAYfpXzT+1l4+u9SfTPhp4fcvqusurXuw/wCrgz8qn03EZP8Asr6NXu3jvxjY/D/wlqevai+22soTIRnBduioPdmIA9zXzz+zD4Ov/HPibV/if4kXzL3UJmNqGHCJnHy+gAAUey+9clVuTVKPXf0Pay6EaMZY6qtIaJd5Pb7t38j3T4U+ALP4deDNP0e2QAxRjzGxy7Hkk+5OTVL4qfB/Rfifo0ttfW6/aMZjmAwyt2IPY16B0o5Jro5Y8vLbQ8v29RVPbKT5r3v5nxn4V8deLP2WddTQfEsc+r+CpJNsM6jL2uT1T27lOh6jByD9a+HPEmneLdHtdU0m8jvrG5XfFPC2VYf0I6EHkHg1U8aeC9J8a6NcWWqW8c0LoQS4HFfFWj+N7j9nzxtdt4M1yDxR4XdjLd6ZHIWRkB2l0bGDjgeYmR0DZGK51GdFNxTcevl/wD2nKhmaSbUa/Topf5P8z73z1oJ4GK898N/G/wAL+Jvh9qHjC1vQdM061e6vY2AE1uEQuyuueuAcdj2JqD4Y/Fm58datr+lanoJ0LUNHMPnoLsXCDzIlkCs21cOFZdy4IGR8x5x2Qi5x546o+fqp0ansqitLsek9Pajr71yHhv4q+E/GGszaVo2vWmo38SGQxQMSHQHBZGxh1BIBKkjkeoqx4v8AiP4c8Bm2j1zVobKe5DNBb4aSaYLjcUjQFmAyM4Heq9nO/LZ37WM+ePLzXVjpyfal6j2rB8K+NNC8c2DX2hanbapaq5jd7d8lHHVWHVWGRwQDzW9jjFQ04uzWpaaauhaKKKBiYoxS0UAFFFFABSGlooAaBxQDzTq4f4t+J9b8J+DJ7/w/psup6gZoodsNubhoUdgGlEQZTJtBzt3KO5IANOKc5KK6kSkopyZ2p570A96+Wvh74q1C7+IPw91GPUfEavrr63Z6tZ63qJm3S2k6wg+Qp8iEhkfiFVGGwc9a9t+Meu3eheAb5NMl8nWtTaPStOcdUuLhhEkmO4j3GQ/7MbVtOi4zUL7/AOdjKNVSi5W2/wArmr4Z+IPhnxnd3ttoOv6bq9xZnbcR2FykrRckDO0njIIz0yCOxroxjJ9a+S/BN49jrN7e+H5Bp0OqX6eEtGu2AYWWmWEEhlmTPynmKcoSCN0yEggEHnfCPxE1O+afVdC1DVoNUn0q61rSIr3xDd6gtysAU/Z7yCUmKNpEcEeTgphvQFtp4dJ2Ttfa++2v6mCxNkuZf1/Vj7L1TVLTRrF7u9uI7W3jGWklbaB/n0rxXxX8bNS8S3R0rwfbyIrHab5k+dv9xf4R7nn2Fcv4O07xN+0BZ6d4g1W4aHTLiNZooh8saAjOFX+vJ96978KeA9K8I2qx2cC+aBzKwyTXzTWJxbad4Q/F/wCR1K89dkeb+CPgYWnGpeIpXublzvKOxYk+rE9TXd+JPhrpXiQackkYiisn3IiDA7ZH6Cuw696XFdtPD0qcPZxirf1v3LUUlYjghS3hSJBtRAAAKloorrKKs+n2t1/rbeOT/eUGq8fhzTIX3JYwBvXYK0qKdwIooI4F2xoqD0UYqWiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhoA8c+PHwt8R/EeTT00u7iuNIW2uLa90e61S9sIbjzCmGdrV1Mg2h1KPlcOeK808X/CvxfpupX/AI71qLRdGtrGI32sSaPqV9Iby2ggYGM2znyWO1VAbbuG0YNfVfekeJZFKnBUjBB6EV0wxEopRe23yZyyoQk3Lr+p8J+GLvUbLxP4Vu9Be21XTfCFi0t9c2rCe3m1O8bz7oB1JDKuUUEHK8jjFe7a/pVr8bNPn1fw8LB9WnsV03VdG1ZnWK4gDmSP95Hh0eN2Zo5Vzje3AOCvslt4X0mysZbO3062traXO+KGIKpJ9hXivjj4can4C1YeIfDDyRrGdxjTnA7gjuD6V5eJrYijW+s0dY9Y/qvzsQqPJDlev9f5CeBvgZrsusabc+KfsNrp2m3h1GKztLue9murvy/KWa4uZvnkKx/IowAo45wu36AAAGK4L4bfFOx8d24glK2erxL+9tSeGx1ZM9R7dR+p72uiOKWMiqsXdM6KcYxj7o6iisrXtctPDmmTX17IUgiA4UbmdicKqqOWYkgADkkirSbdkW2krs0JZViRndgiKMkk4AFcVP8AFfTZmMei2V/4icHHmafCBAfcTyFImH+6xPtWDe2tz4xkFx4hjAtAd0OjB90EfoZscSv7HKL2BI3HZVwihVwqgYAHQV6dPCJK89Wccqzfw6IafH3iaQ5i8IwInpc6sqt+SxsP1p0fxNvLQg6p4W1S1h7zWbR3ar9VRvMP/AUP+LvOPrR5x9a2+r039n8/8zP2k19r8v8AI6Tw/wCKdL8U27T6ZepdCNtsiDKyRN/ddGAZD7MAa18Z+leX6podtqF1HextJZapEMQ6hanZMg64J6MueqMCp7iuh8JeL57+8bR9XWKDV0j8yOSLIivIwcGRAeQQSNyZO3I5IINcVXDOC5o6o6KdW75ZbnXkjNIpoPFecfHj4ow/Cf4fXuqhlOoy/wCj2ETc7pmBwceijLH2GO9cMpKEXKWyO+jSnXqRpQV23ZHinx+125+NPxX0v4ZaLKzaXYSifVZYjwZO65/2Acf7znP3a+nvDWg2vhrRLPTbSJYoLeNY1RRgAAYrxL9lD4XTeHPDs3ibWFeTXNYY3Ekk3LgEkjJPc5JPuTX0CRmsKMXZ1Jbv8uiPTzGtBOOFou8YaX7vq/v28h9FJS10njnnvxk+H+pfEfwxbaXpup2+nFLxZ7iK9tjcW93EEdTFJHuXcu5lcA5UtGu5WGQfC/AaTeL/ABt8ME16YanPL4e1OKaZokTzNtzCgO1AFHCjgACvdvjD8R7z4YeGrbVbPRxq5mvEtpPNkmjhtkKO3myNDDM4XKBeIz8zrnAya+WdM+JEPgq98DazpQg8Q6ho+n3dpeaYlvqMDSPPOkgFu7WRDkbSPn8sHjkdvUw8JzpNWuun3O+v3Hm1pwhVvfXS/wB6sa/j/wCCNn8OPijpE9pqcuneGL1Z9U1m1jbEf2GzCzy7h3jL+ShB/wCenGKT4LyQfH74Y31vp2tW2k+K7/W5dZ1jTdTtjPHdQP5gETR7l8yJd8ZAOQDCgdSDg7nxN1SX4neKbmytw4XXb638L2qnqlnb/wCk6lJ9HkKWze8a/Wsz9or4MH4aNo/jDwZI2jX0d2kEl0izeTbDy3PmyeTHI4XKhMhDkuAeDkc7hUoRhCgldu9v8un/AAx68KtHHynLHzatG0Zb2t0dtbeZu/C7Ur/VfiJ8K7nU7s3t8fD2pxy3BjSPzNlzCgO1AFHCjgACoL+e98bePdPsH1K+09fE3iLWIbu6067ktrj7LpkhtYbdJYyHRNwaQhWGWZz/ABkV5n4f+NmjeC9Q8AXWm61pPirxDo2nXVjfaTEt9bS3E080cn+jZtCHPysAH8sdOR29I8XNN8OvEthrEvkWE9lrF9q2kvq/nRWV5a3wEtxC88UUvkypMWwGTlQuM7jt73F890rXv+vT7jxHdRV3orfp95p/DbW77Tfin4LeW6kubjU4td0HUZ5G+a6Om3/kW8r/AN59vmZY8nIr6gHavmP4KaFN4t8eaHrVsZLjRtBttQkOpPbyQJe39/c/aLsxpIA3lqwUKxAJy3bBP04SPwrzsTbnt1/4P+R2YdPk1/rRfqHQVzXiHx/o3h67+xzTSXWo7d32Gxhe4mAPQsqA7AezNge9YGu+J7rxRd3GnaTO9npcLmG51KJsSSuDhooT/Dg8NJ1BBC8jcsWk6ZZaHbfZ7G2jtoixdgg5dj1Zj1Zj3Ykk961pYVyXNP7iZ1ne0fvLLfEHXrg5s/B8yKeh1HUIYSfqI/Mx/P1xQvxC163GbvwfNIo6nTtQhmP4CTy8/wCetS+cfWjzj611+wpfyr73/mY88/5vy/yNXQPiBo/iC8FlFNLZ6iVLfYb+B7eZgOpVXA3gdymR7103UV5vq2m2WuWv2a+to7qHIYLIOVYdGU9VYdiMEdqdofia68J3UFjqs73ukTOIYNRlbMsDk4WOYn7yk8CTrkgNknceSphbLmh9xtCs72l956RRSZpa4DsGj86xvFPirSfBmjyanrN7HYWKMkZlkycszBVUAAkkkgYArZA/Cue8aeDtK8caBJpmsCcWyyJOs1vcyW0sUiNuWRJY2VkYEZyCPypw5VJc+3UmV+V8u58v6X4isfD3iD4eeJ9Teax0H+2/F1y1/NbyLHHFNqUkkLv8uUV0+YFscc12H7RXxHSxnl1CxuUki8NaSb62mQ70fU77da2JGPvbENw5A7SKeK5j4heG/CEUVxo2j6z4w8QTzK0Mwn8V6lLalSMMpUz4kBGQR90579KzPCPwV8V+OrjSdJ1/SJ9O0WDWJdZ1C/mmRheFIxBZRxKpyESBRkMB83QHrW9PGYfESl7F3cb77f16Hl8tVLkXW2qv0SQvhbWAmp/DHQrSy+weH7FLnTFuJuWM01o6oznoCWQKAO79ea5P4caRb+CfCWn6hcR3Eep+G9D1MazDNAwFrOY0ihtskYaSR2baATkLnoRn7PPw90A+HJ9Dl02GfT502SxOv3vQ56gggEEcggEciuT0/wDZ38L2urW97c3Ouayls4ktrTWNZur2CBh0KpLIwyMnBIyOmcAATh5xjFe3blJX1sut/wDOxrLDyvo1/Vv8jY+Bugy+GPhL4W024XZPb2ESOvoQozXeAUxUWNVVQFUDAA7U/PpWUnzNyO9JRSSFooopFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRyxJNGyOodGGCCOtSUUAeH/ABJ+Ek9hd/294bZ7e6ibzNkR2kEdxW58MPjBF4kK6TrO2z1uP5QW+VZ8eno3t37eg9RIDLgjIPrXzR8bG0W28UTw21pc2l/DtY3MYAjckA8c549fUV4OMj9SbxNJ2vuuj/yfmYy9z3ke3+GPH+n+KdZ1jTLdJYbnTZTG4lxiQAkblwemR+o9a47VNUPi3xjdXO7fpeju1pap/DJcjiaX/gP+rHoRL61414K8fz+FPE8utXLmXfbyLOT1f5cgn33KvP1r03wZE1l4X0yORi87QLNM56vK/wA8jfizMfxr3OHcR9fpyrS3i7ff/wAA461XmSj/AF5HUebR5tUfP+tHn/WvsPZnLzF7zaPNqj5/1o8/60ezDmL3m1m69ZTajZBrSUW2pW7CezuTn91MPuk/7J5Vh3VmHepPP+tHn/Wj2dwcrnd+EvE0Pivw3aaqiGAyqRNC5yYZVJWSM+6srKfpXy5qFxL+058f1jhJl8HeG22xkfcmcH5m99zL/wB8oPWn/FL4q3fgPRfE3g7SBIdX166jeyEYO6KOZAsxX3Lqce8pPavaf2evhbF8MfAdrbOqnULgedcyAdXPX8B0/CvjcVBfWHRXwrV/ov8AM+0wUvqmD+ty+Od1HyWzf6L5np9pax2VtHBEoWNFCgCp6KK0PHCiiigBjIrgqwDA9iKj+xw/88Y/++RU9FO7QrI8n8DfAOz8GeLU1qTXdS1r7Mtythb6gsO2zE8vmzbTHGhYs+CWcsxwOa9UkiSZCjqHU9QwyDTyM96TpVTnKbu3qTCEYKyPBfjl+zTpfj22bU9KhTTtbhG6OaJcEkcgHHXn8u1cn8JP2iL7wxqkfgj4pJ9nuoyIrXWZx8kg6ASk/wDoz/vrBya+pulfP37Vum+CLbwvb3PiWC4jnuJjDb3FlDvdH2k7icgAcfj6GuKrFx/eRdn+D9T38DXVZLB1480XtbdPuv1R6TrXxR8PeF/Guh+FLmZ4dS1hC9qUj/dcZwGbsWIIHX8Mim/E7XZrazs9CsJng1HVmZPOiOHgt1wZpAexwVVT2aRT2NfnZqPjjUoZdGgh1U6lHoUwl0y8dWWSFQQwTnnAKqQOcY4OK+ztE8ZwfEXxLLr8B/0dNLtIYVznYZFMso+uTGD/ALldWWVFi6zTXw6/18wz7KnldCnNO/NdN+e/yuvxOwtIobC1itreJYYIkCRxoMKqgYAAqXzao+f9aPP+tfXch8PzF7zaPNqj5/1o8/60ezDmL3m1FdRxXttLb3EazQSqUkjcZVlIwQR3GKref9aPP+tHsw5jb+GGuyy297oF/M89/pJUJLIxZ57Z8+TISep+VkJPJaMnuK7z6V4pa61D4b+IuiX88qW9veW9xY3EkrbUAAEqEn22P/32aZ4w+OlzqVw2l+DrdppWO03zpk/8AU/zb8u9fJZnVp4Op728tUlu/RHoUKqcLPdaHo/jH4h6N4Gtd+o3GbhhmO0i+aV/w7D3OBXjN9rvi/4z3ZtbaNtO0YnmGMkKR/tt/F/L2ra8GfBG51S6/tXxNPJPNId7JIxZmPuTXtOnaXa6RbJBaQpDGowAoxXiexr4zWu+WP8AKnv6v9DezlvscV4G+EOleEo0lkQXd5jJkcZwfavQAoUAAYA7Cl7UnSvVhCNOKhBWSNEraIdRRRWowooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsDXPBGjeInL3tlHLIRgvjmt+ilZPcDw74n/A/R7XwXrt7pvmW91DZyvHt5G4IccVHo94txpNlKuNrwIwx0wVBr2rULVL+xuLZgGWRCpB9xXzr4RaTTLKfRJyRc6PM1kwbr5an9034xlPxz6V7mUwpx54xSTdn6nlYxcrjI6vz6PPqh5/0o8/6V9J7M8/mL/n0efVDz/pR5/0o9mHMX/Po8+qHn/Ske5WNSzMFUDJJOABR7MOY57wp8NLTxn8ebzXLw+bHpFnbeXExyvmMZecew2/z619MKAgwBgDjFeWfAewebRtS8QyqQ2sXTTRbhg+QoCRfmihserGvU+3rXxWLUPbycF1/HqfQUqlSdKCqSbsrK/Rdh9FFFcpqFFFFABRRRQAUUUUAICKx/EvhTTfFtl9l1O3W4hznawzWwBiloBNrVHimufspeCNYLMLBIHPeNQp/MYNcf4D8JW/w61nxR4dtc/Zra7iliDMSQrwpxknOMq1fTGa8P8AiXaHw98TbS/PyWms2v2Z27efGS0Y+pVpB+AHpXo5aoRxG2rVv1McdXr1aKhKbcU72bdu36lnz6PPqh5/0o8/6V9d7M8DmL/n0efVDz/pR5/0o9mHMX/Po8+qHn/Sjz/pR7MOYwvGmjzeLNd8KaNDN5Iub52kOM5RYJM/qV/KvaPB3w40nwdbqIIFkuMfNM4ySa85+HFqfEPxPnvR89potoYQw6efKQzj6qix/wDfZHrXuIr4/MqdJ4nmUVzJWb/E9bBr3HJ9WPopKWuA7wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAExxXjHxf8I3GlaqPFulwNOPLEN/bRj5pIwchgO7LkkeoLDuCPZyajlgSeNo5FDowwVPQ1tRrSoVFUj0MalNVYuMj50s9Ug1C1juLaVZoJBuV0OQRUv2nPStrxz8Fr6wvJ9V8IypC8p3z2EoJhlPrgfdb3H4g4FecXHimXRpTBrml3ukTLwzNEZYc+zqDx7sFr7jDYyhiVo7Psz56tQq0Xqrrv/Wx132mj7SK5FfHvh8jJ1uwj9pLlUP5Eg1G3j3SnOy1mk1GXtHZRNKT+IGB+JFejKMYq7dkcqk27I7L7TWfDp0/xD1c+HLHLWmQNSuV+6kfeIH+8w4Pop9SKb4d8E+LPH0i5gfw7pDfedyDdOvsRwn4ZPoRXvfg/wAG6b4J0mOx06BYkUfMwHLHuTXz2OzKFNOnQd5d+iPUw+FnN81RWXbua+nWEOmWMNrAoWKJQqgD0q1RRXyO57oUUUUAFFFFABRRRQAUUUUAFFFFADT2Ncr8R/BkfjfwzcWBYxXK4kt5l+9HIpyrD3BANdXwBzRjFOMnCSlHdEySkrM+ZdM1aYzz6dqMYtdXtDtnh6BvSRPVT+hyO1aP2gV6X8R/hZZ+NYluYWNhrEGTBeRYDKf6g9weD3rxHWIvEvgqYwa7pMt3EvC3+npuUj1ZCcg/7ufoK+zweYUq6UajtL8GfP18NUpO8VdHR/aaPtNcenj/AEJvv6pb2xHVbpjCR9Q+CKH8faEv3NVt7g9ltWMxP0CZJr2+WNr30ODnd7HYfaKzdU1iWKWCxsIxdavdnZb2/wDN2x0Re5+g6kVm6QviPxpMINB0ia3jY4N9qCbUUeqpnJP+9t/GvbPhx8KrTwWrXlzI2oazNgzXc2Cx9h6AdgOBXi4zMKVBONN80vwR30MNUqu8lZGn8NfBaeCPDUNkWM13ITLczt96SRjlmPuSTXXdBSe9GOtfGSk5ycpbs+gSUUkth1FFFSUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUL/RrHVEK3VrFOp671Bq/RQByk/wv8NTyB20uEEei1f0/wAGaJpbBrbToI29QgzW5RTu+4rIYqKi4UBR6Cn0UUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVDPbRXKFZY1kU9mGamooA5q9+HXh2/JMulwEnqQuKLP4deHbEqY9LgyOhK5rpaKd33FZEMFrDapthiWNfRRipqKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z" alt="" width="330" height="194" />(这样没问题)

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAEVAgkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE20nTtSjiud1v4g+HPDtz9m1HWbS3u8Z+zGUNNj18sZbH4U1Fydoq5Dkoq8nY6HNBNcUPi/wCFgTuv7mNf+ekun3CJ/wB9GMD9a3tE8VaN4nheXSdUs9RSM4c2s6ybD6MAeD7GrlTnBXcWvkKNSMnZNM2aKKKzNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATPFBbA5pCwArzHV9em8dTSwWs7W/htGKNLCxD6gRwcMPuw54yOX9Qv39aVKVV2WxlOooLXc3dV+Jlhb3UllpVrdeIb2JiksenhNkLekkrsqKR3XJYf3ayn8TeNbw7o7LRNLU9Flmmu2H1wsYz7A9+pxy60ht9PtYra1hjtreJdscMKhEQegA4AqfzvevUjh4R6X9TjdSUt39xWj8QeOLU5aLQNSA52gz2mfbP73H1x36cc3LX4oW9vIsfiHTbnw4ScC5uGSW0J/67ISFH/XQJ/Kmed70jukilWwykYIPIIpyw8Jbr7hKco9Tu45FmQOjBkYZBByCKfya8ps7mbwCxn06NptCzuudMjUnyB3ktwOmOpjHB5K4bIb02zvYNRtIbq2mS4tpkEkckbbldSMggjqCK8ytRlSfdM7KdRT9S3RRRWBsFFFFABRRSZoAWiiigAooooAKKKKAG4HHNZuu65Z+HNOkvb6byolIUAAszseFRVHLMTwAOTWixCrknAFeSRayfGusNrch3adA7x6VF/CU+61wfVn5CnsmMY3tnpoUXWl5Lcwq1PZrTdlu+fVvGDl9UuJtL0tvuaVZybHZf+m8ynJPqiEKMkEuOat6TpGnaDbmDTbC2sISclLaJYwT6nA5PvR5/1o8/617Kp2XLHRHBfW71Ze84Vk6t4a0nW5kuLuxje7j/ANXeR5juIv8AclXDr+BFWPP+tHn/AFquTqgbT0YzT/E2peDm26tcyaxog4+2tGPtVoPWXaMSJ/tABlxlt2Sw9Dt7mO6gjmhdZInUMrqcqwPIIPcV595+fWoPBWr/APCM+IY/D8hxpV+Hk07PSCUAs8A/2SuXUdtrjoFA4K+GVnOC1W5vSq8rUZbHqFFJS15R3hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnnxW1V5YrLw1bSNHPq+83EiHDR2ibfNIPq25Ix6eYT2qnGywxpHGqpGgCqqjAAHQAVjatfHUfij4gmbkWFvbWMXouQ0r/id6Z/3RV3zzX0uGo8lKPnr9549SpzTb+X3F7zj60ecfWqPnmjzzXV7Mz5i95x9aPOPrVHzzR55o9mHMXvOPrTPh3qR0LxLd+HHP8Aod2j6jp47R4ZRPEPQBnVx/10YdFqn9oOM1ja1fNputeGNTTh7bVIoifVJswsD7ZdT9QKwrUfaU2v6uVGpyyUj3WikHIBqjfazp+mMq3l9bWjOMqJ5lQn6ZNfLntF+iuLv/jR8P8ASkD3vjrw1aJu2bp9Xt0G705frwa53UP2rfgtpRkW7+LngeKSL78R8RWhkHGfuiTP6UAd94k8RWPhTRrrVtTm+z2NsoaSQIztyQFVVUFmYsQAoBJJAAJNeVf8L51P/hJPD4l0Czg8P6zq50SNv7TEmoW9wIJZszQojRpxCQU8wsu5ScElRz/jD9sb9m/XNIutF1z4n+FtR0+8j2ywpd+crDOeSgOCCARzkYBrwe9+L/wv8IeCNI8eaTq1vafDKy+JoeHULW0maJIv7JePKxKhkPznHC+/TmuujCEoO61/r8TjrSnGUbPRtH3rrOrWug6Re6nfSrb2VnA9xPK3RI0UszH6AE184/Dz4ka9Z+Or3VPEevXy6Tb6LFqWs2M6iSOzubqQvb2kMaJuDxxGNMLkyGVepxWDcfto/Cj9pNj4E8C+ILjWBcSJPrN1Jp1zbW8GmRfvrks0qLw6x+Tjr+99q8C8Kf8ABR34DaVpHi6z8ZWXiDXL3xHqE9zqEVrp6SRbN+IYt7SrnZGkahh/dBBq6cYwpOU1v99vL8RTcpVFGPT8/M+zP+F86p/wknh8TaBZweH9Z1Y6JG39piTULe4EEs2ZoURo04hIKeYWXcpOCSo9r/CvzRk/aP8ABOh/AvRfiz4a8N6rD4LtviSJbXRUgiS8Ef8AZbw7QiyMgO4k8MeK6GX/AIK+6fd5/sf4JeNNSL/6jftTzP8AvlHx36ZrKvCMWuVWui6DlJS5ns/8j9DHdYkLMQqqMkk4AFcp4D+Kvg34p2dzdeD/ABVo/ie3tpPKnk0m9juRE/o2wnafTPWvhK6/4Ko+PdTjdNL/AGXPF19A6lGkN5cLgnthbFh0x371+efxO8VeJPhN8Q7Hxh4T8E638CtamZpI4bbUZAkgzk+XGyKQmeCvKdBtHfmOo/ez4xalJY+Bru1gkMV1qbx6bE6nBUzMEZh/uqWb/gNYEHlWsEcMSiOKNQiIvRQBgAV8f/suftJfGT47+GPDP/Cz/DFrbaXFqKPaeJgptJtQIhlK7rbbtIzg+YuxegCnkj61EgHpX0eBpr2N+7Z5GIk/aMv+eKPPFUPNHtR5o9q9HkOfmZf88UeeKoeaPajzR7UcgczL/nisLxqZT4duLq25u7Apf2/YmSFhIBn/AGtpU+zGr3mj2qG/mi+w3HnY8ny23/THNLkE22rHrul38OraZa3sDb4biJZUb1Vhkfzq5n1rxr4D/FPTdY8K6JoVzMsGo29pFDE5bMd0AgAZCccn+6fwz29l6Cvho1qdVv2buk2v+HPdhLmimOooorYsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDwWSQ2/wARfGsLdWu4JwfZrdF/9pmtDz6g+KdofD/xIsNTxttNXtvsUrdhMhLxZ+oaUfUgd6r+fX2mEtVoxku1vu0Pn6t4VJJ9/wA9S/59Hn1Q8+jz66/ZmXMX/Po8+qHn0efR7MOYv+fXm/7QXhaf4i/DS78J2t9PptxrVzbWSXlu2JYCZkbehzwRtrufPqv4dtD4o+Juj2agvbaSjahcHsJGBSJT74Mp9sL6iueulTpyk+iKg3OSiurPlAf8EiZNWy2t/EzxRqJlGJi12v7xem35lbtxzn6VdsP+CMPgCEET6/4hn3d5LyH5fpthH61+kdFfEH0Z8A2H/BHv4TwMDO2oXAAxtkvpAD7/AC45rotP/wCCTXwQsxGZNBe5dTnfLqF2c89x5u0/lX25RQB8X69/wTB+EsXh29j0Hwzp8erlQ0D3bSPGWBB2kksVDAFcgHGc4OKkk/ZIuJPhnF8Pm+GPhJvCcWo/2qunnxDd7PtOwpv/ANR/dJ46d8Z5r7LzSe9b08RKmuVephUpKbuz8+vD3wm0XwEup+CtJttGtfFGoJZeDbltItordpFZRdalOUQA7GjMcQJGA+eua+j9f/ZV8KReAb3SfC+kafpertAqw3BiCAsCMgsoyu4AruAJXORyK9hPhjSDrJ1g6ZaHVSoQ3vkr5xUdAWxnFaoIrSriOdxcVa2vz0/AinR5VJN3ufJ037P3imfwvFoD+DtEazi1P+10l/4Su+88XXlGLzPM8nd9wlcZx7Zr2r4afC1NB8EaNZeJY7bVddgtkju71YwBNIAAXx7nmvSMUVnUryqqz/UuFGNN3Rijwho8Sny9OtwwHHyCvjb4ff8ABNXRB8YNb+IHxG1q68farc3z3NoNTQeVboXJjUR5IbYCFGflAA2quBX3JRWBueSfGfw5aaF4Ctr2wtlii0a7hvWVB/yzRh5n/jhasVbkMAQQQe9ey6zpcGs6VdWNwgkhuIzGysMggjFfO2lLceG7258NagW+16eSIXfrPb5+Rwe5Awre4z/EK+jyqopRdJ77r9TyMZBxkqi22Om8/wB6PP8Aes7z6PPr6P2Z5vOaPn+9Hn+9Z3n0efR7MOc0fP8AesXxnqTWfhjUWjAeeSIwQp/elkOxB+LMtWfPqPwnpL+PfHNrCoLaNo0nn3D/AMMlyPuJ77OSf9or3U1zV5RoU3OXQ0gnUkox6mvrnwGgPhfTm0g+TfWlsiccbyqjn68U3wH8YrvQbtdC8Yb43Q7I9QkHI9BJ6j/a/P1r3BRgcdBXHePfhpp3jW0bdGsN4B8kyjnNfl+IwsnUdfDvln17P1/zPoOS3wnXRTJcRq8bK6MAVYHIIPQg1J1r510Hxbr/AMGNUGl6vFLeaIWwo6mMesZP/oPT6V7xoevWPiTTYr7TrhLq2kHDoeh7gjsR6Grw+KjWbhNcs1un+a7oqMr6dTUooor0CwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBpH5UDk0uc1zvjvxM/gzwdrWuR2MupPp9rJcLZwZ3SlRnbkAkD1IBwMnB6UJXaS3Jbsrs6EH8KXPrXyhafF/wAQ61quha5B4i1RJD4pg0K90mTT0tLAxSWrTjy45FM54aM75GVic/IowB9K+LvEtp4O8Marrt9uFnptrLdShfvFUUsQB3JxgDuSK3nRlTai92YwqqonLZIswa5p1zqE1hDf28t/CA0tqkqmWMHoWXOR1HWr46mvjvw21x4X8aTa5LYQXOv6BZRW1zt+T7XruqzpJJE8gGTGjS24B52qWxjGK29O8Z+K9U8YSrD4s8RLanU5dGg1pxZHTpNQjDloGsxAHWDfFIgYSmQ4AL87q2lhH0ZjHE7KS1PqqoLy9t9Pgaa5njtoV6ySuFUfia5T4TePP+Fj+BdN1uW2+w3kqmO6td27yZ0JSRM98MrDPfFY/wAbtT0AeGjY6telJmYSxW0PzSuRnBx2HXk8V5eJn9XhJtpNd3ZXOvmTjzLYm+It94T8Y+GbvTLjxDpsUvDRypeR745FOVYc9QQD+FeRaF4kW+aWyuJoW1G34k8lgUlHaROfun07Hj0J8+uLVyyOkDxRynESsclv8ete76V8CbXUPBNmJne11pR50d1EcPGx9D+mDwRwcischzzEyryp1YJQW+99drX+88+tSeI1WjRg/aPrR9oz61g6zZ+KPBErQ6zpcmoWw+7f6emcj1eMn9VJz6Cs1PH+hkYk1KG1YdVu8wEfUOBiv1alUo11enJM8Wop03aSsdh9o+tH2j61yD+P9BUfLq9pP7W8glP5LmrWmXeu+LZhb+H9GuDuOPtt/GY4lHqE+830O361VSdKir1JJCgpTdoK5ratrg02KNY42ub2dvLtrVD80z+g9B3J7DmvXfhP4Gk8IaLLNekTavfyG4u5QMAsQBgegAAUD0ArO+HHwhh8MTHVdVmOp63IMNPIBhB/dUdFHsPxyea9M9a+MzDHfWHyU/hX4nu4bDukuae/5DqKKK8c9EKKKKACiiigAooooAKKKKAGcEUjuI0LHoBk070rjfib8TtD+FnhuXVdbuAi8rDbrzLcPjhEXufU9B1NTKSirvYunTnVmoQV29kfP3jr9svxFphvU0rwQbCG3laIXmru5DEHA+RQvPsGNcd8OPFvjb9o/wAcSte3tvZnTLZp4ms7VEVJCQFUk5YgjdkE4OKbB4S8S/H691LxnrOn/Y9Cs4pJrDR4BtWTAJVe2SxxljyfYYFes/sZeAbjw14O1HVdRtXtb7UbgnZKmxljXhQR253H8a8+jOv7eM4yaW66bH22Lhl9DAVKahH2uifWze9m29e7RhSa/Lot/wD2Zr8B0vUAdodwRBMfVHPHP908+metaguM9q978SeD9J8VWb2+pWcdwjDB3KCa8p1H9me2t3zoOtXukx/88I5CYx9EOVH4CvvsPnMLWrLXuj8qq4GSd6b08zmzcYqKa/it4mlmkSKJBlncgKB7k1sp+z14meQrL4vuvK7YihB/MRg/rW9oX7Nei288VzrV1ca5cIdwN3IXUH2B4H4AV1zzjDRXuptmEcDWb1sjgNCj1T4iXgsvD8csFmTibVpI8KF7+UD94/7RGPTNfQfg7wjY+DNDg02xjCRxj5mPVj3JPck961NN0q00m3WC0hSCJRgBBirYFfL4vGzxUrvRdEexQw8aK7vuOooorgOsxvEfhew8U2D217CsisOGxyK8A1+01v4Aag+rWc7S6M7qskTAssu5gqptHJYkhVx8xJAGc4P0tWB408GaX488Pz6LrEUk1lM8cp8mZ4ZEkjkWSN1dCGVldFYEEciuSrhqWIcXO6ae63XoZVItxfLv0OA0j453134i8OWWp+EbnRbDXpHgtJ7m7RrhZUQuwlgUfuxgHGW3DoyqcgemeI9es/C+galrOoSeTY6fbSXc8n92ONSzH8ga+J9e0CXwXa+E9M8MB7c6Z441dbUIcsqqJPXrx1z1716x4l+MMHjvQNP8L6pH/Z881yLvWZMHy1061HnzufQMY44mU9puPbvqOnDEU8PZrmV797P87HJCtJQk5b9PuX6jvAXxZ8S6b4u1iTxbq011p9rpllcX2ni2i/0HUblsx2NuI41diFkgUCRnZmkByK34P2kXTWNTgvfD9tHa6WjTalFZ63b3d/p8S/fkmtk6BcjcEdyPQnAPC+CtIuptM+HWvarC0V74t8XzatdxyclR/Z19LBEfaPy4gP8ArkvfFUvhNYW0vgj4LajNEj32qajqC6g7AEyrJY3ckqv6gyIhOeMgV6ThTbbcV8tFs+3oZRnUVkpff527+p9YWGoW+qWMF5ayrPbToJI5EOQykZBFWB0ryL9lG7mu/wBnrwRJO7SP/ZsSh3OSVCgKT+GK9dHavLnHkm49j0oPmipdx1FFFSWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJjFVL29t9Ps57m6mjgtYUMksszBURAMlmJ4AA5JNW81i+LvCtj428L6poGpCQ2Oo2720/lOUfawwcEdDTVrq+xLvZ23PlXx34p0K88VX2uWur2E2hr8RtOY6jFco1sAujRKx8wHbgHIPPWvX/AI1+L9KvNJ8O2QvoZ9EumbX9RuYHEiHTbFVndgQcMrS/ZUPYrI1N/wCGb0EJth498Wi3J3GEXcWzP08rFeV618ItY07X7nwHpWhas+iTf2fpsGsTujwLpkbG5uSXDbvMlmYxMm0AogOe1espUajTUvhX4bX9Vuea41YJpr4n/X+RsaP4evNK+C2ieJdWi8rUdU8U6fruqBv+WXnXqcE/3Y/MUD0CDoBxleGNQtlgXwg08SeI7f4hXOoTWBcedFarcT3P2hl6iIxFMOcA+Yo6kA+6eP8Axh4X8I+G5ND1SGLU1ltvs50kKH8xCuMODwqn3/AGvnrSfhd4y+J0s9mvifW7TwzPmN7R5lJMJ/5ZNOV82RccEM5z+JrzFmNFzdFayvey6dr9EVOk1JKOulib4RfGO/TwNc2Hhm1Z59Q1S+vI7t0yFjluZJF2KfZhyenpXpngv4KXesXf9reJ55JppG3skjFmY+5Nd98PPhJofw80y3trK2RpIlChyOn0rt68p4b21Z18Q+Z3ul0XouvqddOlyxSk72PPNU+EdjqHivTNSUiK0s4wgt16HBJB/M16IihVAUYAGAKByaOn4V1wpxg24q19WbWsMmt47hCsqLIp7MM1gXvw+8P37M0umQFm6kIBmukordO2wWOYtPht4csyDHpcGR0JXNb9tZQWaBIIkiUdlGKsUUXbCyCiiikMKKKKACiiigAooooAKKKKAENJRXk3xx+PemfCDTlt4lXUvEd0uLTTUOTzwHfHIXP4seB3IiU4wV5PQ2oUKmImqdJXbNb4wfGbRPg94fN5qL/aL+YEWenxtiS4Yf8AoKjux6e5wD4F8PvhZ4l+PfipfGnxAZhZg5tNOIKxomchQp6L7Hk9WzWh8I/gfrXxE8Rnx18RJXu72VhJFbS/djH8IC9AB2UcD619UWtnFZW6QwxrHEgwFUYrnjGVZ881ZdF+r/yPYqV6eXwdHDO83pKX6R8u7I9O0e00zT0s7eFEt1XbsA4Iqxb20VpEI4Y1jQdFUYFS0tdZ4V7hRRRQIKKKKACiiigAooooATHSuQ+KNj4kv/A+ow+FLkWmuM0Jik8xY2MYmQzIrsjhXaISKrFWAZgccV1/QUdRyKafK0+xMldOPc+QtT+GnxCutEs7WDwbqFvqtlf3OqQ6wPFNu1w1zMGDs+bTYVO7oFHQc9a5fxxp+ra5b6rpuIX8V62bbwgZLbADCJBc6pMoA+4zGO3bA4ZB0r7j6jpXNWvw48L2Xim58SW2gadb69cjE+oxWyLPL/vOBlvxrt+sqSalH0tff5s4nhuienU8DtfEl3LoWm+FdemGl6ro1zDdaTq06FkjmjyAs4GCUdWeNmBB2ue/NVLH4VeObm9ubSw8PjQrS4W5WC8bX1vLPSxc/wCvlsY1t0dnYE7TKwCbjtG3Kn3nx98M9O8a2jFkEN4B8kqjBz715R4f8X6/8G9SGlazFLe6IWwo6tEM9Yyf/QTx6Y5r5+ni6+Xe5V9+n0et1623RcqSveW39bnuPg3wtaeC/DGm6JZKEtbGBYUA6YAxW2KzNE1yx8SadFe6fcpc28gyroeh9COxHoa08cV6Cmqi5073OpWtoLRRRVFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSGgAxmg4rO1LXNO0Zd1/qFrYjGc3MyxjHryR6VSs/HPhzU5Nlpr+mXUn92G9jc/kG9qai+xDlFOzZv0UgIpaRYnQUZFIelcH49+LmkeCVaAN9v1Mj5bSFvun/bb+H6dfauetWp0I89R2Qm0ldnZajqVrpNpJdXtxHa28Yy8krBVH4mvE/F3xuv/EF02leD4JAHOw3xT52/3FP3R7nn2FY1tofiz4zagl1qkrW2mK2UiAKxoP8AZXufc5Ne0eEPh9pXg+1VLWFWmx80rDkmvNviMbteEPxf+SM/en5I858DfA4vMNS8RSNc3LneUdixJ65Ynqa9msbKCwgWG3iWKNRgKoxVjApa9KjQp0I8tNWNElFWQUUUV0DCiiigAooooAKKKKACiiigAooooAKKKKACiikNACEe1IDSnpk8V88/Hn9o2Tw/eN4O8EL/AGp4suD5TzRAOlmT+hk9jwvU+lROpGmrs6sNhamLqclNer6Jd32Rr/Hn9om1+G6/2DoCLq3jC6AWK1Qb1tt3RpAO/cJ1PU4HXkvgh+z5e3uqv408dSvqWu3b+diY7thP9ccccAcDipPgl8GNH8FanDqvjDVrS58XaifOWO8uV85yx/hDHc2TnnqT+VfSyIqKFXAUDoK5405TanUXou3/AAT06+Jhhabw2D6/FLq/JdkEMKQRLHGoRFGAB2qSiius8IKKKKACiiigAooooAKKKKACiiigAooooAKTFLRQAVjeJfC1h4psHtb2FXBHDY5FbFLUtKSswPm6+0bxH8FNaN9pbNc6VI2XibJjkX0Ydj6HqPzr2TwP8QNL8eaf51m/l3CAefauf3kZ/qPQj9DxXR31jDqNs8FzEssTDBVhmvCvG/wr1LwfqI17wvLJCYzv2RnlfX6j2PFePKjUwbdTDq8Osf1X+RlZw1W3Y9+orzH4b/GG08Vqun6nt0/WkGNh4SbH93PQ/wCz+We254G+Itt42utWto7drO5sJjGY2cMXTJAboMcg5HbjnmuynjKNXl5X8V7eq3T7MtSTOzooqN5FiRmdgqqMkk4AFdxRJRXPXXj/AMMWUnl3HiLSoJP7kt9Ep/ItWpY6rZaoheyu4LpB1aCVXA/I0+WVrtEKUW7Jl2ikFLSLCiiigAooooAQDFHUUZFZ+taza+H9Ku9RvZPKtLWJppX64VRk/U+1CTbshN21ZW8ReJbLwxZCe8Zi7t5cFtCu6Wd8ZCIvc8E+gAJJABI4e7bXvFLF9VvpNHsW+7pulTskhH/TS4GHJ9o9gHq3Wq2mtdareNrmqpt1G5TbHbnkWUJ5EK+/Qu38TeyqBq+fjvXtUsMqa11Z506rn6f1uULHwZ4e05i8Gj2YmJy07wq8rH1Z2yzHpyTVu70LSb9NlzpdncJ/dlt0YfqKk8/3o8/3rp5G3cz0WljLg8JxaJiTw7e3WgSL92C2cvafQ27HywP90KfQjitvT/iSmlq1v4rEGmXCKWju4ixtroAZITPKvxnyzk/3S2DiDz8d6y/EekW/iXSJ7C5J8qUDJHUEHII9wcGuavQdSDt8XRvuVGbh8P8AwDmfFHxg1rxrdtpPhG3mtrdvla7xiZx7f3B+v0rc8BfAyDTmS/1tvtV0Tu8s8gH3rR+DlpZ6Gl14fliQ6rYKri62gNdwNkJL/vZUqwHGRngMBXqNfLRy90qnPiXzTXXovRHdC00pbkdvbxWkSxwoscajAVRgCpqKK7zYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikpaAIuneviP48/wDBRC30S/k0b4a2tvqc0MpSbW79C1u2OogjBBcZ/jJA4OAwIavtmWRYI2eRgiKCWZjgAetflN+01pPw28N2/wDZPw50YtaRaoHutcmkaUuxjlxDCzHiIc/7xUEdMnmxE+SjKUZWkk2tL7JvY+v4VweGxuZUqeMoupCTjFpPlS5pJXb3e+yabZ7D4L/bI+Ifxi8Iv4Y0+xt4vFVxcPFLqVhG0QigOMbQSdrcnL9hjHzHI+ivgV+z7p3w1046pqm251iVfMnuZv4e55PQd/514x/wTV8LWEngzxFrMkCPenUDEJCOQAi4/ma9m/bR+Iw+G/7P/iCSGTy9R1lRo9p1zumBDkEdCIhKQfUCiEU1GtVe8U32Wiew8xi1j6mUZfDlj7RxWrbfvWSbetl2Pg6zurj9pv8Aa4GoRb3tb/V/tETbSDFZQECIEdvkSMH3YmvcPjL+33r1r4sn8MfDHTbS6t7SR7QancQtdy3ki8boI0IG3IbBO7cMHAHWj/wTm+GMl/L4m8YMvlSLGdPsZiv3GxlmH4lR/wAAr57+Afi+w+CHxssdQ8X6dcLDpUk9peW8cYklt5RlT8ueSrKQaxVWcKdNyly87u2+l02kr3WyS1PtqmBweNx+LpUqPtvqdKMYQV1zuLUZSfLZuzbem59FfBj9v/xRD42tdB+JWn2i2dxMts99BbNaz2kjHAMqE4K5IzwpXJPPSvvmKVZ41dDuRgCCO4r8gf2qviX4b+Lvxb1LxN4XtrqCwubSGORrmERPJKibS+0E8bQgycH5enSv1W+FV9LqXw38N3U+fOlsIWfd1yUGa0oVfa88eZPldrq2qaT6aXW2x8txRldLBU8HiqdF0XWg3KDvpJOza5m3Z7pM6+iiius+CCiiigAooooAKKKKACiiigAooooAKKKKACiiigApjqJFKsAVPBBp9FAHy/8AGf8Asm18VXFvaWFxaXcO1jcoQEckA8D26Zz1FZXwp8XyaF4/tLq5lJivG+z3Dseu7GGP/AtpJ+tfTWq+EdI1uQyXljFNIerlea8i8efD/QLvX4dB0yA2sojF1f3MZ5iiLEJGvo7kNz2VWPBKmvn3k1XEYpVqdSzTvt+evbTY5aq5Pfud1rXjm81G6lsPDS28hiYx3GqXALQRMDgrGox5rjofmVVPBJIK1hyeDbDUnE2uS3PiKfO4nVJDJCD6rBxEv4KD05qaSe30DRj5Max21pD8kUagBVUcADt0r5+8V/th6F4S8Q3ukX8urJe2j+XMtrosU0QbAJCu14hYc9Sq/SvueWnh0lt59TC0qru9fyPo+30fTLSPy4NOtIU/uxwKo/ICs668EeHrqRZf7Jt7a5X7t1Zr9mnT/dlj2uO3Q9q+bP8AhuXwt/z317/wnoP/AJPpU/bl8KmQBp9cC55J0CAD/wBLz/KhYin0bKdFveJ9M2eo6/4TI8i4k8R6Wv3rW7YfbIx38uXgSf7snJ/v9q7zRNdsvEVgl7p84nt3JU9QyMOCrKeVYHgqQCD1rgNJ1KW7tZDcKsdzDNJbyqhyodHKNg+mVNVLvU38Hag/iK2UtbBQNUtkH+uhH/LUD/npGOf9pQV/u4mrh1UXNBa/mKFVwdnt+R69RUME8d1DHLE6vE6hldTkMD0INTV5B6AUUUUAN7GvM/itfC+1rw9oA5hkkbUrtOzRw42KfrK8bf8AAD716Z0rxjxdN53xevQx/wCPfSLcIP8AfllLf+gLXdgafPWV+l2cmJlanbuavnD1rO8R+JbHwroV/rGpTeRYWULTzSYzhVGTgdz6Duad5tee/tA+H7rxd8HPFOl2KPJdS2vmJHHyz7HWQqB3JCEY96+njTTkkzz6TUpqMno2fFnxD/aw+KPxZ8Uvp/hG5vNHspJWWzsNGVhcyLk4LOvzMxGM44z0ArKi+Kv7QPwkvIdR1jUPE0MLtgJr8cssMncgCUEdO45FZfwW8bf8Kj+ImneIzY/bo7cPHLACFYq6lSVODgjOf07198+B/jP4H+Mdi9jZ3MM80yYm0jUowspHUgo2Vccc7Sw9a+mxuH+pWjGinC2//BPp8V/stlGknG253PgbxJL4q8E+H9auI0hn1LT7e8kijztRpI1cgZ5wC1bfnD1rOi8uCJI40WONAFVEGAoHQAdhTvNr5fkPlnO70Kusah/YWtaDrynaLS7W2uWHe3nIjYH2DmJz/wBc69qHIzXz78RZQPAWvv8AxRWUsq/7yqWH6gV73p7mSxt3PVo1P6V4uYw5eWXqv6+87MLK7kvQtUUUV4x6IUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUlADaq3+oW2lWU95eTpa2sCGSWWVgqIoGSST0Aqr4i8Rad4V0i61TVbyKxsbZC8k0rYCj+pPQAcknAr5H8S+LPFH7WPif+xtES40nwLbyjex4a4IP3n9T3C9F6nJxWFSryaJXk9kejg8E8Rec3ywju3+S7t9i18Qvil4h/aP8QSeD/BAmtPCqPsvNR2lWuhnv3Cei9T1bA4Hgf7Rfi34Ur8HdM8I+CNa/tbxBaa5HPekWU6BkSGdHbzXjVH+ZkHyk5zxwK/Q34b/DTSPhvocNhp1ukexfncDlj3JPevCtT/4J1fC/UNRurqOfW7NZpGkEEN4NkeTnau5ScDPcmsnRcqc02ueSau9kmum59JlucYPB46jUqRkqNKSklG15NNO8m7b2+R5J+wP8dfBHgDw3deFtf1r+zda1TVcWkElrMUk3hFXMgQouTxywrC/4KO/Eo+I/iRong2ykMtvodr588cZJLXVwAVUjuRGIyP8Arqa940r/AIJ9fDTw1qVprC3Ou3D2Eq3SxPc7wzIdw+VVy3IHA618j/BzQdT/AGiP2o11a/tJ/Il1J9Vu1kDYgRWzFFkj+HCKB6IfStJUpSw8aO7dk2r2SS1e3ZNfM9nBY3L5Zzic7otqMIyqRU7JupJtRSSbuk5J/I/Qj9mX4cp8L/g34e0coq3JgE1wV/jlb5mP4kmvAvir4p/ZR+J/ijVbvxPfC11+0kaC5u7W3vYGnaNtpOYl2ynjAPJwB2Ar7PiiWCFEUYVAFH0FfL/j3/gnx8PvGvie91u31DWNDlvZmuJ7WxmjMLOzFmIDoxXJJ4BAHYCupttPltfzbSt8kz4fL69COJdXGVJxTT1hZyvp3a0evU+EfFHhvw78R/jKugfDLTLi28P3U0VlZebvaZ0H+snfeS3UuwzztCggHiv188LaUNA8N6ZpygAWtukWB7ACvNPg1+y34H+CMj3Oh2clxqbja2o3reZNj0B7DjoMV7AFBIPesKcHHmcneUndv5JJLySPQz3N6eZSo0sPFqlSjyxUndu7cnJvu29tkPpaKK1PmQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK9zOlrbyzSsEjjUuzMcAADk14r4Oun1DTptauARc6zO9+5b7wR/9Sp/3YhGv4V6L8V7p7H4aeJ548+ZHp1wy49fLavP9KVLXS7OFDlI4URSPQKAK9vLqd1KXyPNxUveijWnVLmF4pBuR1KsPUGvONa+Cnh3U7i4vLjT9MuLhlyZbnSbWWRsDA3O0ZLHAHJJNd35tR3Uv+jS/7p/lXpzoRn8Sucsako7M+BfG3hbS4f2k9D0ldPtYtNupdDM9pDCscLma2tXm+RQAAzO5IGB8xr6s8L/BXw1qOk2V/JpGiCV1EhC6JZ4B/wC/VfJfxG8d6LYftheGNKnuwl8Z/DKeX7tZ2RX/ANCFfdfgmX/iltO/65CvHwVONSclJXsd9ecoxi0zodPt49OtVhRmfBLM7nLMxOSxPckkmrJlBBB5Bqh5tHm17ip2PO5mb3wcvimjahoLn5tFu2t4QT0t2AkhA9lRwg/6516GBXknwvlCfErxPCv3X06xmP8Avb7hf5ItetA5NfM4yCp15Jev3nqYd81Nf1sPooorjOob0x6V4r8TITpXxT0y7YYi1LT5LYN/00jYOo/FTIf+A17VxxXAfGTwpceIvC63NgAdU0yUXlrn+JlzlT7MpZT7Ma7MHVVKtFy22fzObEQc6bS3OP8AO96POHrWHpWtQ6xp8N3DkLIOUbhkYcMrDsQcgj1FcH+0J4j1zw38KNY1Lw9LLBqFuY282Fdzom8biBz26+2a+4VPmaSPEpp1JqCe5z/xW/ZX0PxteT6podwugarKS0kYj3W0zepUYKEnGSuR/s5Oa+SvGnhfXfhP4qGn6nH9h1KArPBcW8nDDPyyRsOeo68EEdiK9H8M/t1+IdOs1g1rRrPVpkUL9oiYwO59WAyuevQCvLviZ8Uda+PPji2u100LcmNbO0srNWdtu8lR6liWPNfVYCpiqD9lX1p21vZr5H2mB+t0XyYjWml1sfd/7PvxGufiP8MdO1O/cSajCzWlzIOPMdMfMR2JUqT7k16P5wI615f8CvAMvww+G+n6PdMG1Bi1zdlTkCV8ZUfQBVz3wTXoAnxXzFWnF1JOG19PQ+QxE4e2lyfDd2KHjljeaF/ZsfM2pTxWUYH+24DH8F3H8K+ibOLybSGM9QgH6V4V8PdKfxp4+S+xu0nQiwRuqy3TAqxH+4pK/V2Have+9fIZpUUqipr7P5s7sHBqLm+o6iiivHPRCiiigAooooAKKKKACiiigAooooAKKKKAGE461z/jTxvo/wAP9DudY1u7WzsYBy7cs7dkUdWY9gKo/Ev4m6J8K/Dkur63deWvIgt05luHxwiL3P6Dqa+YNA8LeKv2qfFsXiDxOH0/wtbtm005SQgT26ZzxlurdsDArnqVXF8kFeX5ebPVwmCVSLxGIfLTXXq/Jef5DHbxZ+134rjknjm0jwLaS5gtQceZjjcx/iY+vReg7k/V/grwTpfgXRodO0y3SCOJQvyjGaueG/DNh4X0uGx0+BIII1CgIuOlaoHPrTp01DV6t7sjGY2WJtTguWnHaK29X3b7jqWiitzzRKgjsreKVpUgjSU9XVQCfxqxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGH400v+3fCer2GcfabaSLPplSK8R8H6kb/wvpkrDbKIFilUn7sifI6/gykfhX0OyhgQeh4r541zTX8C+Ob7TJBt07VJGvbJzwBIeZYvqT849cv6V7mVVFzSpPrqvkeZjYuymuhs+d71Fczf6PL/ALp/lVPz6bJJ5kbL6jFfUOmeVzH5RfHQ/wDGyTwqP+ol4P8A/SHTa/VXwZNjwxp/P/LMV88eKP2NvCXi340WHxMvxrbeJ*p4hbavDFZM1lFDFBugazd8FbePeBMCTuwVyMfQuj2w0vTbe13bvKULkd68XA4WrTnJzVrndiK0Jxios3fO96PO96zvPrO17W20uwLQR+fezMIbW3zzLK33V+ncnsAT2r2HDlV2cNzsvgtE1/wCKPFmrDmAyQ2CH18pcsR/wKRh/wE16/jPNcn8MvCf/AAhnhCy093MtwQZZ5WGDJK5LOx9yxJ/Gut4xXwuJqKrWlJbfofQ0YOFNJ7i0UUVzm4U1lDqQRkHginUUAeFfEj4eX/hrUrjXvD9ubqzuDvvNPQ4JI/jTsGxxzwcDOMZrjrXxNYajaSywyiQR/LLERiRD/dZTyD7GvqJ0DqVbBB6g15p46+BGg+M3NzEsmmah2urVjG49sjBx7dK97BZm6NoVleP4o8ytg1N88HZny54g+FHgLxFeNcXXg/TzIepi3w55znEbKK6PwV4d8LeCmI0jw/Z6U7DaZ4Ey5HoWOWxx613Vz8APGGlOVsNYtr6EfdN9bh2/NStY0/we8ezzFTdaXb+phtWH/oUjV9LHM8HJW57fec7p4qS5Hdr10/M1mvESMyM4VANxYnAA9c1kx3er+Mllh8MWz3VugPnX4JCY/uxH+I/7Q4HYk9Oz8J/s6R3EcU/ibVLnVtjZFs7bYeOfuLhT7ZBr2vSdFstEtFtrKBLeJRjCDFeFjs0hOEqVFPXS+33Do4KSd6j+R4F8P/inN8NbSLQ9Y0UxWcXyrNbLtkX/AHlPDfXI/GvcfD3i7SPFlqZtLv4rpQPmVTh0/wB5TyPxFJ4g8G6T4lgaO9tEckffxyK8N+Inwtb4c6ZeeJ9N1KW0tbCNp3aMsJEA/u7eST0AHXNfB8mMoP8Adv2i7Pf5Pr8z1Hemr9EfRvH1oz618pWP7SXivwzouk6xq9xoGs6O+uJod7Z2Enn39s7RNJ880b+TvXAyihuv385x9CaV8R/Dur6Nd6pb6pCLW0ga4uA52tDGq7mZlPIAAPPTivSclCUYT0k1e3UUK0Jq6OozQK+UfCfjrVNN8ejxJqmpayY4dGbVdZ003ss0Xm3s4NjYxW7P5UckaBI/kCljKpYnJNdPb/HPxZc+MZ9Jt5PDtxfRStEdHFreKHlVDI1smoH9y84QN8oQDKt02tjveFmtjKOIi7XW59En3o/lXPeA/Gen/EHwnpuv6YX+xX8Kyosq7XTPVWHZgcgjsQa6ADrXI04tp7nWmmroXPNHNHXiuS8VeNDptz/Zelwre606B/LckQ26HpJKw6Dg4UfM2OMDLCoRlOXLFClJRV2dPLPHbxNJI6xxqMs7nAA9Sa5Of4t+EYpCket2966nBWw3XRB9P3Qbn29j6VzD+FoNXlW48RTHxHcg7lW7QfZoj/0zg+6uP7x3P6sa3YzHDGqRqqIowqqMAD0Ar0I4SK+Jt+mhxuvJ/CrfiTp8YPCOf32sLYL/AHtQhltVHuTKqgD36cH0rq7G/ttTtY7i0uIrq3cZSWBw6MPYjg1x/nD2rBm8IadHcveaWG0LUmOTeaZtiZz/ANNFxskHs6tTeEi/hbXrqNVprez/AAPVia8++L/xm0P4O+Hje6jJ5+oTAi006Nv3s7f+yqO7Hge5IB5H4g/HjUPhZ4Ulk1XSjqesOwhsLmzQrbXLnODIMkxkd1yd38J6hfOvhL8Edb+JniQ+O/iJK91cysHhtZRhYx/CNvQAdl7fWvHr+0py9lFa9+iXc+hwVCjKn9bxL9xOyS3b7eS7soeAfhf4l/aC8VL4y8esy2AObTTyCsaR5yFCnovt1PU19a6TpVrotlHaWsSwwxjACjFWLKyhsLZIII1iiQYCqOlTHGKVOmoLz6vuY4zGTxUlfSK0SWyQ4UUtFbHCFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJmgBaKTNLQAUUUUAFFFFABRRRQAUUUmaAEFGKx/Eni3SfCdp9o1O9itEx8qscu3sqjk/hXjfiD43634quGsPCdjJbRsdv2qRQ0rfQchf1P0rz62MpUfd3l2WrJckh3xS+IHjHwp4pnFtqMVtpxAMEDRRkkYwTypY855ziuIufGfiP4nS22i3rQ3TSSBklWAJJEQchlZcYIxmuhl+DurLol/rmsSSXuoCMyLC7lndu24nk113wL+HbaNatrF/Ftu5uI0YcoteHCjjp4uM+Zwi9Wk27eV9lfsYOEpOz2Z55d6hfeErxdN8TILSfIWK+xtguPTnojex4Pb0Gl9q3d6998Q+GNO8UWT2uo2sdzEwIw65rx7V/2criwZn8M63cWEf8NpIRJCPYK2Qo9lxX6vhc3hblrrXujzK2Bknem9Oxifafej7T702T4TfEa3cIl1pMw7u9o5P6Sj+VXbH4E+MNTkC6p4gS0tz1WxhEbH8Tkj8CK9OWZ4NK6lf5P/I5FhK7duX8TC1XxLa6UyROzTXcv+ptIRullP8Asr6e5wB3Ir0P4XfDi8m1BPEfiONVuwuLSyBytsp6892PGT7AV0ngj4N6D4JJmhtzdXrHL3VwxkkY+pZsk/ia7wDAx2r5zG5nLELkpq0fxZ6uHwapvmm7sfRRRXiHpBRRRQAUUUUAFFFFAFaRXk4B2r6CovsIz6e9XcClpptDuMjjESBV6Cn0UUhCdqo6ppdnrmnXVhf2sN7Y3MTQz29xGHjlRhhlZTwQRwQau44rn/HPh+78WeD9Z0ex1OXRry/tJLeLUIQS9uzKQHG1lPGezA+hHWiO6u7eZMtnpc+XfiD4V0u18UXuh21lFa6WPiJpkS20CBEVTosRwAOnNdB8Xfg7p+l6joGnQ3gistZvvLvI3bAWyjRproseymNDGT6yr61NN+zZ4zk0abSX1HwdLZy3q6gzyaZqbTtcKgjWXzjqXmAhAFHzdOK4fxNBqVtdz/Du91qXXPE0Fla+Fbd3D+aYLkrcahc/MWbyzAsEQcscOmNxNenPD0MVKM21Jxs/utZ/fueU+aEXGUPifdfd9xjeFPGWratcRarqWnGGz8XeMdO1BJZVKyJCtzELVG7HCpAPqK7HwdqunzaKunQzxtrsPxNumkgJ/fL/AKZcs7Y6keVvyfQmvonWPhfouv8AgqPw7dW5jgjhjSOaA7JYXQhkkRuzKyqw9wK8N1/4B/EC28TahrmkSeExrF1G0b+IoLG4jvsMgQyJEZmhjmKjBlVecn5QDXPTnZSvPq3Z9uiXkaSozhJOOulv8z0P9l1/N+Hd7Ih/0V9a1F7fHTyjdylMe2CK9h9s4r5l+H3i/Xfgdotj4av9L+1aPZIIovl2SIo44YDB+hH41c8H/Fr+yfiBdzTXs8+hapKWdbhjm2ZjwcE4AGcHHGPXAr53EZvR9r76cW3qno1fZ+aOqElCKi+mh7V4+8Tv4X0LzLVUm1O6kW1sYHzteZs4JxztUBnb/ZRq5DSbJdLt3XzXuLiZzLcXMv355DjLt+QAA4AAAwABVbxVqI1r4msgYNbaLYqFweDNOck/VUjXB9JDVnz+e1fbYWhy0k+r1/yOOrU5pvsi95/vR5/vVHz/AKUef9K7eQy5i95/vR5/vVHz/pR5/wBKOQOYi8QaFp/ijTZLHUoBcWz9VPBB6ggjkEHBBHIIBrofhvr8t1b3eiXzBtS0sqvmbQpuIGB8qbA4ycMrY/iRsAAisPz/AKVl/b/7D8c+GtTB2pPK+l3GO6Sjch98SRoPYO1cuIoKdN91qaU6nLJHtNLSUtfOnrBRRRQAUUUUAN6GlxWR4m8RWPhLQr3WdTmMFhZxmWWQKXOB2CgEkk4AA5JIFeOH9oLV5dY0a6h03ST4fvdcXQZrZNQE+oWkxiaTM3lbokcALmIMxAYZbJwNIUpzTa2Mp1IwaT3PeTSjvVPUtQttI026v7yVbe0tomnmlfoiKCzMfYAE18y+BviDrFv8QJdf1vXNSg0yDQ21rXLKaV5YLc3Mpe1tY4RkJJDCqqQgy5kBO4mqp0XUTa6EzqKDSfU+pQM0o6mvBT+0Hq8usaNdQ6bpJ8P3uuLoM1smoCfULSYxNJmbyt0SOAFzEGYgMMtk4HvKnPNROnKnbm6lwnGd3EdRRRUGg38KwfE3jCy8MpCsyzXV5Pn7PZWib5psdSBkAKMjLMQoyMkZFReM/Fa+GbGIQxi51K8fyLO1JwJJMEkseyKAWY+g4ySAeQ0rTvsTzXVzM17qdzg3N7IPmkI6KB/CgycIOBnuSSezD4f2i5pbfmctWryvlW5PPqXi7XsmS/t/DVq3SGziW5ugPeWTMYPsI2x/ePWqzeFHmO648ReIJ3/vDU3i/SPaP0rT86jzvfFemqSWiSRyN3+J3M6PSNZ08h9O8WamjDpFfiO7hb/eDKH/ACcVpWnxCvtFPleKLSOODp/a+nhjbD3lQkvCPfLKByWFIJqDKCMHpUyoxno1/mUpOOzO+ilSWNXRgyMMgg5BHrUgOa8r0bVh4Av4kLEeGrmRYzGTkafKxwrL6RMSAR0QkEYUtj1MEEZryKtJ0pWex3U6imvMCcVxXjT4u+FPAM7Q6xqUi3McJuJreytJryW3hGczSpCjmKPg/vHCrweeDXaHp1xXyX478E6v8NL/AMW6fJ4km1fTNc8I+JtTa2e3jj/eo9pskkYDdLIFuHTezHgAAKOKqhThUdpP5dzOtOVNXij6ssb631Kzhu7WRZradBJHIhyGUjIIryX4kfHS98F+KxpmnaJbatZ211YWd7NLeNFMZ7pziKFBGwZo4gJm3MvylQMk8dD4F8RaZ4W+D2gajq19DYWUGmRPJNM2AAIwT9TgdBzXyj4p8bas3izRLi2tfM1NILrxpqEcyb/JuLlStpGy/wB+C1RY+ezCph7OHNKSvy9Ot3tt/WpnWquPKouzZ9a+IfjN4X8M6jNYXc9/c3sAVp4dL0q7vzb5AYCUwROIzgg4Yjgg9xXnWq/tD3PjFBb+CbUvFISovZE3PnocJ0Ug/wB7J9ga8afwlrfieW1s4PEF/pcfhzwXBr4e0uWQzapOJppbp9pAdmdc/Nkdf7xr2L4IzQS/F7xcywRxrq2m6brZjVRiOaaErJj0yYgx9SSe9Ri8E6kLU5uNt7W1Wn3EQrTqSSlon/wSTw58EtV8S3f9o+JbyVnk5ZZHLOfbJr2Tw94Q0zwzbrFZWqRkDl8cmtvGaXPtXDRw1LDr92rd+79Wdyio7CModSrAEHsaFUIoCgADsKdRXWUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUD2kEkyytEjSL0cqMj8anooAKSlooA83+Mmja1rOk20WixIz7yZsxqxZccDJBxXjMXwU8U3L7mtAme5IFfVvGKTivLxGXUMVLmqpv5u33GcoRlufNXgK2vdJ1bxLY6kWa9trmGIuxzlBbx7Py5H4V2Pn+9Z3jK3OhfFi8BGIdYsknjP/TSE7XH4q6f98mlFx9a/RMHTj9XgobJJfdoeFU9yco+bNDz/AHo8/wB6oef9aPP+tdvsyOYv+f70ef71Q8/60ef9aPZhzF/z/evN/wBoO88Rw/DC+bwbJDF4t+02v9lS3Cho0ufPj2swIIIHJxg13Pn/AFrNe3bX/G/hbSEG4C6OoTe0cI4/N3T8jWNWKjTlJ9Ey4vmkkup8tx/G79vHwkP3/hTwd4pCf89YFj38Y/hmh6/e7f0qxD+3x+1H4cOPEP7PFjqBTO/+ybiVc9uMPN3578fnX6OtbROMNGjfUVBNo9jOMSWkLfVBXxB9CfnxD/wVd8UaSQPE/wCzb4u0cKcNJDcSSAjpkb7VBy3HX8TWvYf8FlfhLFKsGueDvHGh3BzkPY20iAD/ALbq3XI+7X3BP4J0O5z5mm27Z/2BWPqHwh8K6nE0VxpUMkbdUZcg/hQB84aH/wAFYP2cdVH+leK9S0fOf+P3RbpscZ/5ZJJ9Pwr0DRv2/v2eNeA+zfFfQYs5/wCP15LX/wBGovrWtrf7HPwn8QbvtvgvRLrPX7Rp0MnfP8SnvXAa3/wTV+CGsZJ8HadCT/z7xmHvn/lmVoA9aX43/B34iaVdaZH8QPBPiLT7uNoZ7VNbtLhJEI+ZWUOc8HkH1rw3WNO0fSPEs1noEVrDpEXxO09beOyC+Sq/2FbZC7eMZz0rkfEv/BJD4VXEMk2hWR02/QboRJdXE0JcHIDo8hyp6EAjjpityL9kHxJp3w8k8B2fg34fp4TbUP7UOnJPqar9p2hPMDfad4+UAYDY9q7sO4qL5pWvpb9Tirxk5Llje2t/0Pob476hFP4c03ww0qxJ4ivFtbtmOFSwjUzXhb0VoY2iz2My1znwC8L23jPwP4i8Q69p8d2njW6lu5bS8jDBrRhsgidT/dhWNSPavjTwz8Hdb+FY+JngtfG02ufEPXBD4e02yuLtrj+zYrqNZ7uWO3Z9wh8oRL5nALDbnIAq3pf7NH7X3ge2gtNN+M93qWkxKI2sbp5Yg0f8SLIA7x9MBlII7EVpOKpQUE99b+X+W33EwftZSna9tLef+Z7r4i0LT/DPiy60zSrSKw0+2+J2nJDbQIFSMf2DanAA4HJNfXa8qK/OfXtJ+P8AY6NNpb/Cvw1qsMmorqz3MfijV2uzdLEIll+0yTLNkRoqAb8YAGMVhaF+0x+2l8NdLg02++E+h+JLC2XZFdXVy01669vMkW7y5ABG4pknnJ75YhwkotSu1/Vx0FOLkpRsnr/wD9Ete+JXhTwt4k0fw/q/iPStL1zWdw07Tru8jinvCuMiJGIL9R0rpjX4pfthfGrxz+0F4bt7n4h/s76toWq6LE5tPEmk3cyizBIYl8wurR8DIZhz0ZTXY/sMf8FPvF+kahpnw8+JFnqnjnT5iLew1qxge61S27ASooLXCD+9/rBz9/gDjR3H6NSal/wknjXWdUc7rewkbS7IdgF2md/q0nyn2hX3rS84etcb8O7kzeC9LuSSTdxm7JI5JlYyEn3JfNdH5/vX1saPJFRXQ8Hn5ve7l/zh60ecPWqHn+9Hn+9aezHzF/zh60ecPWqHn+9Hn+9HIHMWL2GDUbOe0uUE1vPG0UkbdGVhgg/ga6D4T63PqnhqSzvZWnv9JuH0+aV/vSBMGN2/2mjaNj7sa5bzznrXGP8AEm68B+MNftdOto7281CC1nVHJxEcSJuKjrnYAOR92vIzJwo4aVWfS2yu+36mtGpy1F5n0PqOp2mkWj3V7cxWlugy0szhVH4mvjjxP8bdJ+IWv6ufEWpnRCuiaz4fs7Kz0DU7qVRdSwBZZJFhKPhbVW+Q4PmdeK9G0/4e+LfideJfeILyWO3zlVk4Cj0VRwK9b8K/C7Q/C0amG0Se4HWWRQTmvm8HiKspOU4Wj0u9f8kd1SE6tlsj4z8P6frPjmHTvDuu3c13pTXcGnR6jPaXFnHPZJD590RFOiPGojjkjJwF3OvrX0L+z94OtPF2heIfG+q2m668X3Es6eYuGjsyvlwJ7EQrGD7g12vxL+Dmm/Ew2TXOoajpb29tcWTnT5VjE1tP5fnROCpwG8pPmXDDBAIBNdro2kW2g6XaadaIIra2jWKNQOgAwK7/ANzSg1RjZyd36+vnoRToOM25anyFrVlqXgJxpV/Ne6XqU/h2PwrqM66He3sdxDGJFjvLSSCNkaVkkYmNyuCBkAKc+yfAnwterrXiLxbe6dLpEGpiC102wuABLBZwRBIw47MSGYjJxuxnivZJIlkI3AN9RmnBcHjgVpUxDnG1rX3LhQUZXvtsPooorlOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzv4xeDp/EmgxXmnADWNNkFzak8BiAcofZlJU+xrzHStbi1W1E8W5CCUkicYeJx95GHYj/ADxX0eQCMHoa8d+JHwnuhfTa/wCGCsV84zcWb/6q5A9cdG9GHI9xxXt5fjVRfs6mz/A83E4dz9+G/wCZz3n+9BuMd65OHxdbx3P2TUkfRr8HBt73Cbj/ALDfdb8Dn1ArYFzkZByK+xhGM0pRd0eG5OLs9zUFxnvR5/vWZ9prJvvF1jZz/ZkkN7fHhbO0HmSk+4H3fq2B71Tgoq70Qufm0R0V5qcOnWstxPKIoIlLO7dAK7H4K+Frgve+KdSiaK71DCW0Mg+aG3X7i+xOSx92I7Cuf8B/C/U/FN9b6r4mj+yWMTCS30sHIyOQ0h/ibuB0HbJGa92iiSGMIg2ovAA7V8jmONjUXsqT06vuezhMPKL9pU36Imooor589YKKKKACiiigAooooAqyadazXKXL28b3CcLIygsPxqyQDS0UAMKK3VQfwqJ7K2k+9BG31UVYooA+Lv2o/wBgq+/aa+Lthqur+NdUs/A9tbRxjwzZgRwiVSS0obJGWyAcoW44YDAHsPwf/ZG+HXwP0N7Tw14ftLOYx7XnVN0shx/HI2Wf/gRNe4Uh5FNAfN/gFvsvhi3sTxJYSS2Tr/dMcjJj8gD9CK6LzvesvxVpz+C/iLfQuu3T9cb7Vbv2WdUAdP8AgSqGH+69P8/ivuqLVanGa6nzcl7OTi+ho+d70ed71n/aKPtFdHsyOY0PO96PO96z/tFH2ij2Ycxoed7074UaPaaz4/8AFOqT26Ti2S2sUkYZwyq0jAfTzR+vpWBrGtxaPps95KC4jHyov3nYnCoPckgD3NeofB7wxP4Z8IRfbAP7RvZHvLkj/npIxYgewzgewFeNmclTo8nWR2YVOdS/Y7pVCgBQAB2FOoor5U9sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA53xL4C0PxZC0epWEVwCMElRmvN7r9mHw+GY2F1facD0S1uHiVfoFIxXtJ6U0jNawrVKf8OTXozKdOE/iin6nitv+zBoj4+26lqV6B1Wa8lkB9vmY8V3vhb4W+HPB6KNN02GEr3CCuuAo/wA9ac69Wp8cm/VhClTh8MUvRAoAGAMCnUUViahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByvj/AME23jrQpLOfMc6kPBOhw8bjlWB7EGvBf7QvNC1P+xtfQWupKdscx+WO7Hqno3qv5ZFfUWPzrnvF/gXSPG+ntaaraRzoRwWUEivSwWNnhZWesXuv8jjxGHVZXWjPEPtPvR9p96s6x8DPFGgOzeH9XW9s1+5aagvmYHoGyG/MnHpXPy+H/iBaELJ4ZtZ2/vJeug/Ly2/nX11PMMJUV+a3qeHPDVoO3Lf0Nf7T71Xv9ZttMtmuLqdIIV6s56nsB6k+g5NR2Xw/+ImsyCP7HYaRGesrFpmH0ztH5g16B4N+Adnpl3FqOv3Umt6knKPPjbH/ALqgBV/ACsK+aYakvcfM/I0p4OtN6qy8zA+HHge88a6tb65q9s9rpFq2+zs5R80j/wDPVx2OOg7ZPc8e9KoQAAYA4ApsUKQxrHGoRFGAAOlSV8diMRPEVHOR7tKlGlHliLRRRXObhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJgHtS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z" alt="" width="316" height="168" />(1/9这条边直接被掩盖了)

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFqAf0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikNADGzx0oFfLv7Xn7Wd/wDA++svCnhvS1u/E+p2guku7ld8VsjSNGm2McySFkfAOAMLkNnFfNX7KPx7+IXin9oTQbfWPGGr6rY6i0/2i0u7lngbKFuIz8qYIGNoGOg44rGVSEKkacr3le2jttfVn0mG4fxeKy+rmcHFQpq7Ta5mr2ulva/Vn6cY6muS+JPxQ8MfCXw5/bvi3VE0jTDMtusrRPKzyMCQioiszHCscAHhSegNdaeD71+df/BSb4knWPHeg+CrSYvBo9sb26jjbO65m4RWHqsagj/rtTqT9nBztfsu72S+85sly3+1sdTwjlyxd3J9opXk/uR90fDv4neGvix4aXXfC2pLquls7R+b5TxMGU4IZHVWU/UD1rqu/QV8C+Nfihqf7I37PXgrwd4beG18Ya5bve3d4wWQ2cZILOqnjc7swUkEAI/GcV4bceKPj74U8M6b8Q7rxN4sh0O6nUW97c6xJNC7sCy7oGdl2sAcbkx24yMzWrQpScbN2V3ZXsvPb/M9fA8MV8xpxr06sIRqScYc7ac2uySfpd2Vz9bQOPSlAwOa8O/ZP+Pr/Hv4em+v4Y7bXdPl+y30cX3HYAESKOwYEHHY5GTivb3dY0LMwCgZJJwBWsdUmtU9V5p6nyuIw9XC1p4eqrSg2muzTsyWkwBWPeeLtD0/P2rWdPtsDcfOuo0wPXk1nXHxT8G2yF5fFmhxIP4n1KED/wBCrTkl2MLM6ndSbq4//hcfgL/od/Dv/g1g/wDi6dD8XPA9w4ji8Z6BI56KmqQEn8N9HJLsw5X2OworPsNe07VRmx1C1vP+uEyyfyNX8j1pNW3ELRSZpaQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmfegBB7UpHFee+OPjt4G+HxePVvEFv8AbE4NnbHz58+hVM7f+BYFeOax+2VqGtyNB4H8GXV+xyFu9ROEB90Q4/8AHxXRDD1Zq6Wnd6FKDep9Cav4L0DWdWttYv8AR7G71OzQx299NArTRKTkqrkZAzzjOK/J79kvV7HQvj94VvdRvILCziaYyXFzII40Hlt1Y8CvXvjh+0p8U/DOr2umeINTu9Ka9tvtSW2khbcJGWZR8wwx5Vv4j0r5X8IXtjo3iDS7zVrOW/sbdt01vBJsd/lI4b61xYuVKhWowq1Ffmd12XK9/W+h+p8MZVja+VZhUpUnKM4JR00bU1dLv12P1n8SftZfDPwxHMW8Qf2k8SlimnwPKMD0fAT/AMer80J/Gt98VPj/ACeK5NKuNXlv9WOpDTwx3LCrAxRsQDwiiNenRcV7n8S9a+H7/srL4p8OaVJY6rr93/ZEUN0qNLCVZjOcjOV2RsuQf+Wi5weK6/8A4JzfCS1vdP1vxnqVos3myfZLMyKCNqfeYf8AAiw/4CK2rOk8RThBO0byd3vbSO3nr8jyctisryfF46StOo1RjffX3qnpaKt8z5x/au8ea38QPiUt9rekR6LcWukwWkFrHkgRK0jA8+7tXqHxKsfipP8AsvCTW9SQeE7W3smWyigRAF86JU5CA9WHc10v/BR/4UXln4l0PxvY2Tto81kNNvXhT5LeVHZo2fHTeJCoPTMeOpGfOPiB+1y3jT9m7Svhr/ZEsF8i28V/qEkqmKWOBlZdijnLOiMc9MEc5yOX63ToVq/MkuazV+q5bNLu7/mfR4bAYjNctyieCjzKlKUZ2+x7/NeXZW1uVf2Qfhz4j+I+s+I7TRtbvdKtYY4mnW2mZFkJ3YyAQD0r6hj/AGKbi9ZX1DW7u4cHPzzA/wA1zTv+CeXwuv8Awd8PtS8Qanbvaz61MHiikXawhUYUke/J/EV9bk7ee1dmGrVaFCnSTs0kn92x8HxHjIYvN8VXoO8ZTk011V9/nufLdp+xDpAx517K31c/0xWjD+xR4aQfPK8h95HH8mr6V4o4rZ4qs/tM+c9pPufOcf7FnhIA795PtLJ/8VUM37FPhh0IR2Q9j5snH/j1fSWD60YPrS+s1v5n94ud9z5R1D9iKzUbrLUZ4pFOVZZMEHt1BrOPwD+Kfg35vD/jPVERf+WP2h2jPpld2P8Ax2vr/p3ozVrF1urv66lc8j5Dj+KXx28BMBqllZeJbdeCZbcI+PYps5/A/jXT+Hv21dLWZbXxb4a1Hw7cZwZIh58f1IIVgPoGr6PntIblSssSSA9mGa5XxD8KPDXiWF47vTISG64UYP4U3Xpz/iQXy0HzJ7os+D/iV4Y8f23m+Htbs9TwNzRxPiVB/tRnDL+IFdNnPSvl/wAZfsdWi3P9oeGL2bS72M7o2t3K7T6j0/AiuetfiN8Z/gzKIdYth4w0iLg/aATOFHpIPmz7tvp+xp1P4Utez0/HYOWMvhZ9hZyPegDFeSfDP9pXwd8SmitI7w6LrLHadN1HEbM3ojfdfnsDu9hXrea5Z05U3yzVmZtOOjFoooqBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRySLEjO7BVUZJJwAKAHHrVLVdWstEsJr3ULuCytIV3SXFzII0QepY8CvCPif8AtZaXoV2+i+CbYeKteYlBJFlraI/Ucyf8BIH+1xivP9N+CfxA+N1/Fqnj3WLgWud0dkjbIox6Ko+UfgMn1rrjhrLmqvlX4v5GihbWWh3Xjf8AbH0KwuH07wdp1z4s1I5VZEVo7cH1zjc2PYAH+9XBHRPjP8cJC2r6tLoOlS/8uVhmGPb6EKcsP95mr6E8DfA7wx4GtUjtbCJpB1Yr1PqfX8a9AihSFQsaKijsoxVOvCnpRjbzer/4A+dR+FHz14F/Y88OaD5c2pg384wT5vzc/Tp+le0aN4D0PQI1W0sIk2jAJXJrocUZrmnVnU1k7mbk5bnG+M/hJ4L+IzWz+JvC+la5JaqVgkvrOOVo1PUKWBIB9K5r/hlb4Sf9E88Pf+C6L/4mvViKORQqs4qyehFj8/v2zPgL4w1nxV4X0LwD4JI8HaZYt9lTTEjSFLmWQ+aWUEbeEi7epzzx9gfAr4dxfCz4XaD4dVAstpbqJiBgtJj5ifcnJrvyDnP6UvU9KyduZy6u1/kelWx9evhaODm1yUrtJK2sndt93pZeRT1fSLHX9NudP1K0gv7G5QxTW1zGJI5EPVWU8EH0NeXaX+yb8J9F1kanaeCdOju1cSIWQsqMOQVUkhfwAr17k0pWnGclotDhUmlZMit7aK0hSGGNYokGFRRgAVNRRQSFFFFABRRRQAUUUUAFFFFABVW90621GFormFJkYYIYZq1RQB4R8Tf2VvDvjNZbmyiFjfEZEkfynP8AX8a8us/FfxV/ZyuEg1AS+LPC8ZwYrgkyRJ/sPyy4H+8o9BX2MBxVTUtJtNXtmgu4UmjYYIYZrqp4mUVyz96PZ/p2LU2tHqjjfhl8afC/xZsvN0W+Au0XM2n3GEuIvqueR/tLke9d91r5j+J37K4F+2v+DLuXR9WhbzUa2YoQ3qMYIPuP1qP4Y/tO6h4d1WPwp8UYjYXqny4db2bY5Ow80Dgf744/vAcmrlQjUXNRd/LqPlUtYn1DRUFvcR3cCTQyLLE6h0kQ5VgeQQR1FT1xGYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVma/rdj4b0a81TUp0tbG0iaaaZ+iqBk/X6d6EruyAreLfFuk+B9BudY1q8WysLZcvI55J7Ko6lj0AHJr5Q8Q+NvG/wC1Lqr6VoUE/h/wVv2uTxJcgHrIR1/3R8o7liBTLS08Qftb+ODfXpmsPBFhMRaWXQMBxubHViOp7Z2jua+svC/hTTvCOlQ2On28cEMShRsUDpXe+XCrvP8ABf8ABNtKfqcJ8Lf2fvDvw6tEZLZZ7wgb5ZBlifc16oiLGoVQFUdAKcRjpR2rhlOU3zSd2ZNt6sWiiikIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBO9eefFH4L6H8TdMkhvLVFucZSZRhlPqD2NehcUuOMU4zcHeL1GnbVHxnovijxr+ylrUen6sk2veB3k27Dy9uCesZP3T/s/db/AGSc19YeE/F2k+ONBttX0W8jvrC4XKSRtyD3Vh1Vh3B5FO8UeFNO8XaVNYajbpPDIpUh1B618nax4a8W/sq+KJdc8NiTUvCtw+bzTWJKFf6EDo/Ud8jNd144rR6T/B/8E10nvufZZ4HFA5rkfht8R9H+J/hm31rRpy8L/JLA/EkEg6o47EfkRgjiuuxjmuGUXBuMlZoxatoxaKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACAUUtZ2sa5Y6DZSXmoXUNlax/emnkCKPQZPc9h3oSbdkS2lqy/718w/tZeIb3xX4k8MfDHSpGWTUpFur0p/cyQgPsNruR/srXsUvxRN4x/sbw9qmqJ2uJY1s4j9POKufqEI9+mfFU8PeLrj9oSXxvd+HYZrVbcRQ2n29d0eFCg7iuM/eOP9o8nv6OGoyjLnkrNJ2v3FCtTTbvsfQngPwZY+BfDVnpdhCsUcMYXgda6LtXCRfFS3tTjW9I1TQx/z3lhFxB9TJCXCD3cL/Kuysb+21O0iubS4iubaVd0c0Lh0ceoI4IriqQqRd5oSqRnsy3RRRWZoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJR0FLXE+I/G9wL2XS9AhhvNQiOLi5nJ+z2nHRtvLv0Plgjj7zLkZuEJTfLEic1BXZ2e7AJJAArBvPHnhvT5PLuvEGl20n92W9jU/kWrhp/CUOsN5niC7uPEMrctFdyEWo9hbqRHj/eDN6k1o2uiaVYx7LfTLO3T+7Fboo/QV3LCrqzldeT2VjutP1qx1ZC9je294ndoJVkA/I1dzXld54K8PXsglfSLWK4X7tzbR+TOn+7ImGX8CKms73X/CZBs7qXxBpi/esb+TN0g/6ZTn75/2Zckn/looqZYR/Yf3jjX/AJl9x6hRWVoOv2XiPTkvLGYSxElGByrxuPvI6nlWHcHkVqVwNNOzOpNNXQtFFFBQUUUUAFFFFABVLVtJtdaspLW7iWWJxghhmrtFAHxx4v8ACniD9l7xw3izwtG914buWxf6dk+WyZ6H0xkkN/CfUEivp7wB4+0n4l+GbXW9FuPOtZhh0biSGQfejcdmH+BGQQa2Na0a01/TprK8iWaGVSpVhmvkXUbXVP2S/iZ/a1lFLdeCtUcJeWqdEGeCO25ckr+K9813xaxUeWXxrZ9/J+fY2X7xWe59l0Vm6Frdj4j0m01PTbhLqxuoxLDNGchlPT/9XatKuBq2jMQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqmo39vpVjc3tzKsNtbxtLLI3RVUZJP0Apb6IDG8WeLU8NxQQwwfbdUuyVtbQPt3Y+87tg7UXIy2D1AAJIB4220QTagmqavKNV1cZKzSA+Vb5/hgjJIjHbI+Y/wATGqOhXFxq8tz4gv0ZL3UiHSKT71tb/wDLKH2wDuYf32b2rZ87n2r36OHVOPn1PLnU53fp0L3nH1o873qj51HnV0ezJ5i8Zie9Yi6RJol5JqPh9ksLx23zWpJFrd+vmIOFY/8APRRuHfcPlN3zqPOpOndWewr31Ou8K+JYPE+nGaJHguIHMNzay48yCUAEq2OOhBBHBBBHBrbArx6/1Q+EtZtvEkZ2WseINUUdHtieJD7xMd2f7pkHevYFYMAw5BrxMRR9jLTZnfRqc6s90PooorlOgKKKKAE60g6VwfiX4qW+larPpOiaTfeK9at8fabTTDGqWuQCBNNK6RoxBBCbi5BB27fmGx4A8cWHxI8G6R4l0pZU0/U7ZLmFJ1CyKrAEBgCQCM84JqnCUY8zRCnFvlTOjxQO9eE/Hb4t+IvC2oXVp4Yu7W2fS7e1ecT2vnm6u7qfyra2HzDaoCSPIRlgpQjHfs9V+LC2Mw0zTNIvfFHiGFEa9stJMax2hKhsSzSukaMQQQm4uQQdu35hr7CfKpd/w9TL20btdvxPRScUdOa5r4f+ObD4j+DdI8S6Usq6fqdslzCk6hZFVgCAwBIBGecE10gHUVg04txe6N01JXQ6iq5uoEuVgaZBcMpZYiw3FR1IHXFTk4GaBnFfEDxPPp7Wmi6ZL5eq6gGYz4B+ywLjfLg8FslVUH+JgcEKRWNptpbaRZRWlqnlwxjAGcknqSSeSSckk8kkk1haVfnXtf8AEGuud4uLxrS2Y/w28BMYA9jIJX/4HWx5w9a+io0PZwS69f68jyJ1OaTf3f15l7z/AHo8/wB6o+cPWjzh6108hHMXvP8Aejz/AHqj5w9aPOHrRyBzFa91GTwjqDeIrRS8SqF1O2Qf6+Af8tAB/wAtIxkj+8oK/wB0j1S2uIruCOeF1lhkUOjqchgRkEGvNDKDkHkGr3wcvjHpOp6C550a8aCEE9LdwJIQPZVcIP8ArnXmYyjaHtFut/Q6cPUtLk6M9Gooorxz0QooooAKKKKACiiigArnPHXgrT/Hnh260rUIVmimQr8w6GujpDQm4u6A+RfhB4r1L9nr4lP8PfEk7N4a1GUnT7qU/LBIx457Kx4I6AkNwCa+uQcmvIf2ivhBB8TvCEpgRU1a0Blt5cc5HY+x6f8A6qyv2YPi/N430Cbw3rrtH4q0MeTMsp+eeJTtEh9SPut74P8AFXdVXt6ftVut/wDM1l765uvU91ooorhMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAb2rz342XePCMGmZIGr3sFjJjvEzbpR+KK4/GvQq8u+OD+U/g+U8xpq4DD/AHoJVH6sK6cKlKtFPuc9d2psg8/FH2iqPn/Wjz/rX1vIePzF77RR9oqj5/1o8/60cgcxe+0UfaKo+f8AWjz/AK0cgcxPfRQ6lY3FpcJvguI2ikU91YYI/I113wi1eXWfh7o0ty5kuoYzazOerPExjZj9SpP41xRn+tfHV98A/wBpX4h65rup+DPjFqPhTwdeapdz2Gm2RdTApmf5cqV4JLHr3ry8wglST8zqwr/efL/I/S2ivzQ/4YO/aS1ncdV/aY8a7ZeJreG7uxGw6YA+1gdP9n86X/h2D8RtVYNqvxz8YXsgGEeS8l+UenzStXzp6x+luRWRqPi3Q9H837frWn2Xlf6z7TdRx7PrkjH41+cw/wCCOmlakoTWPHnia+iHzBDdxcN/e+aJu2e3frWvYf8ABGj4dQbPP1jXbnb1828jG/67Yl/TFAHvl9Y+BLb48eD73wz4rg1XVNS1K/urjTLfWVuUhV7OdpHSFXIQNIAS2OTxngAZX7N/7T/wh8E/AbwVpmufE3wnpuqW2nxQT2E2s2/nwyBQCrxhtykEYwQOa8u+C/7E9n+y/wDFl/E+h+CPEmt31m08VpcWWpWrWs0EiFRuWWRXDAMc8DkcZHXgbL9gDwjpPieJr/wVqNidXvbW2srnXb9ZLoTGSSa7kCwSGIKtvEWUlQdwI4BFeu6ftIJOSei636v8k0eZGShNtRa36eSPUvFvx48A+GviD4S1H4g+JrTw9Z6vPP41lF2rszo4FtpsYVFZiVtlyy44Yg8ZrT8FfGf4J/Er9ozwuvwz8b3XiHW7m8v9QvNPAvFtYI3tZi7IJEWMFpMEgHdkjsBjR8JfsqeA/wBpTUtU+JXjLRbbVP7TuWTSI5o9yRWEf7u3AU8DdGqsRjqxql4K/Zmt/gd8W5/EPh/4Z3M32G4nGnyaBHptvBJBJGY13u5WYkKxypO3dyOMVPM3OUU7WVrXtv8A8EOVKCk1dtp3t6focd8Ff+ClXwO+Evwh8L+Ftc1jVW1vS7RLS7t7XSpXEciDaw3EBSMg8gmtzUP+CyHwHshL5Nh4wvyh+UW+lwjzOcZG+dfrziuj+An7Juk6XrGoWut+Ao7fQUtYhbXGt2tk9+825/M3PACGQr5RBb5t2/PGK+hdP+AngbSjGbTQLS3MfCGKJV2/TA4rixKSqyad03fQ7KP8NXVtD8i/2wf2rvhp+0n400vx/wCBrL4k+FPG2kWgtLLWLeGGNRtZ3VSIrglSDI3zowOG5DYAr0H9kP8A4Ko/Ey81rTfBHjTw1c/Ev7TiGHUdIjWPVIx03SLxFKoGMsxjI5LOa+ov2yf2TvHnxs1fw14c8GeIYPCngORH/t5II2+1XTbhtAIHKbcjaWAyckPwB6r+z1+xv4D/AGd/DBsdC0tHvpI/9Ivp8PPO2Orvjn2AwBngCsFubPYj+HE4k8DaJLyGmtlmYE8hn+ZgfxJro/N965DwSfsGjy6Y3yy6bdT2br/uyEofxQofxroPO96+5UVJcy2Z87e2jL/m0ebVHzvejzveq5A5i95tHm1R873o873o5A5i6ZsVk+FPG2m+EPifq0OoTeTb6jZ2u2YkbY5FaUHf3AI2c9Pyqx53vWB4Z+G1v8R9Y8W6kSY3jkisoJfUxplvw3Ow/wCAmvHzSNVYSbpNKWm+z1WhtQblVjb+tD6MjkSVFZCGUjIIOQRT6+dvDfjXXvg/qS6PrsUt3ou7CN1aIeqE9v8AZ/LHf3rR9bsvEGnxXun3CXNtKMq6H9D6H2NfF4fFRrtwkuWa3T3/AOCj2oyvp1NGiiivQLCiiigAooooAKKKKAGlQwORkGvk34+6Bd/Bn4laN8TNBhb7OJhHqEMfCyKeCD/vDK+x2ntX1nXNfEDwfaeOvCeoaReRiSK4iZeRyDjgj3rehV9nO722foXGXKzT8P63Z+JdFstV0+UT2d5Cs8Mg7qwyPp9K0u9fMX7KHiu98Ma3r3wv1uQ/adMke4sGc43R5+dRntyrgf7TelfTpNTWp+ym0tV09AlHldhaKKKyICiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopMgUALRRRQA3pXn/wAbtHn1XwFdzWiGS9090voFHVniYOFH1xt/GvQM+tRTxx3ELxSAMjggg1VOp7Kan2InFTi4vqeEWOpw6jZwXVu4kgnRZI3HdSMg1P59YWq6Y3w98Sz6PKw/su6maSwlB4jZjloT6c5K/UjsM3PP96+9oThiIKpTejPmp3pycZbo0ftFH2is7z/ejz/eun2ZHMaP2ij7RWd5/vR5/vR7MOYb4i1z+xdDvLxV3yxxnyo/78h4RB7lio/GvYPhp4e/4RXwNo+mMd8sMC+Y/wDecjLN+JyfxryLwRoMnxE8V29yVLaBpMpk8w/dubgcDHqqZP1b/dBP0IqhRgDgcCvk80rxlNUo9N/U9jB02k5vrsPooorwz0wooooAaT7VzHjn4eeH/iPpsVl4h0yPUYIZPNi3EqyMQVOGBBGQSCM4IODXTgfiKXpQpOLunZktJqzRR0fRrLQNMt9O0+3S1s7dBHFDGMKqjoBV+iigoTFLRRQA3JpD0pa8p+L/AO0L4d+Dt9a2OpW19fajdR+bHBZxqQFzgFmZgBkg9Mnjp0qJTjBc0nZG1GhUxE1TpK8n0Oa+IumHwb49bUMbdJ10qsjfwx3QACk+m9QF+qoO9RfaOK8i+In7Ytz42sZ9Es/Btskc58oHUJ2lck8D5VC7T+JrsZH1XwJFa2vifiFo18rVMHy246SH+E/7R4PfB6/T5RmNLEL2Deq28/8AgnFm+T4nLVGrWjZSvpdN+b06HWefR59ZaXayIrKwZWGQwOQRS/aa+q9mfMc5p+fR59ZhufeqGqeJLTSTGk0he5l4itohullP+yo5/HoO5FTKCSux85oa9rbaVYM8Mfn3spENrB/z1mbhV+ncnsAT2r2X4YeE/wDhDfB9nYyMZbpszXEpGDJK5LOx+rEn8a4f4X/Dq8udQi8S+IoQk6rizsgcrbqepPq54yfYAe/svANfGZli1WkqcPhX4s93CUHTXPLdmN4n8J2Hiywe2vYVfI4fHIrwm607xJ8EtYa708td6PK2ZIWyY3Hv6H/aH8q+j84qvf6fb6lavb3MayxOMFWGa+YxGGjiLO9pLZrdf8A7XFMwPBHj3SvHWn+fYS7Z0A861k/1kR9x3HoRxXTn6V4D40+F+p+CNTGv+FppIvLO4pH1UdxjuPY8Vo6D+0vYXdhdQ3GjanqWtaeu+9tdHtxKsSYJ8x2ZlWPgE7Gbcf4Q2DjPDVK0p+wrR97o1s138n5EOoo6S0Pbs0ZrJ8M+I7HxboFhrOmyGWwvoVnhdlKkqwyMg9OteSfGL4za74R1y4tPD0Wmyx6a1hHdLewSSvd3F1MUS2iKyII2SNTKzkPhWXC9a9aFOU5cqHOpGEeZnuJ5pB04rzrWPjPp2k3b2drpGsa/dQlY7oaRbrJFbyED920jsiFxkZRSWGRkciuk8HeNdM8b6e9zpzyo0MhhuLW6iaG4tpAATHJG3Ktgg89QQRkEGk6c4q7Wg1UjJ2TOjoooqDQKKKKAPlH9pXTbj4X/ABO8MfErTIm2xTrDeLHxvXnIP+8pdc+4r6g0vUrfWtMtL+0lE1rdRLNFIvRkYAgj6g1yfxm8EReP/h7q+lOoMjwlomP8LjlT+BANed/sceMZdd+Gk2iXjn7foNy1qUf7wiOWTP0O9f8AgFdsv3tBS6x0+T2NX70L9j36iiiuIyCiiigAooooAKKKKACiiigAooooAKKKKAGYrw/xT8dDqXxFbwF4c1fTNE1VLlrQ3OoQtdzSTLD5xSO2Rl2psB/eyugJVlRX6j3A/wAq8n+LelWVt4v+HF7FbRR3c/iX97OqAPIBpl8BuPU8AD8BW9Hl5nzK+mnqc1bmsuV9Vf0Nj4F+O774j/C7QvEGppCmoXcWZhbqVjLAkEqCSQDjOMmvI/2ldXk8SanqmlW88+3TorfSLKO3nePOrXrK3mfKRl7a2USjPGJjxXX/ALL+qWui/s56Lf3sy29paWstxNK3SONSzMx9gATXCfDfTLrxx8UtB+3RNG9jDL4r1SJ+Sl9fE/Z4W/2oLZRH9HFdcEqdWc9rXsc825wjDulc2vFnxl1/SoLHTtDvWRYriXS4jHpR1O/1Oe3AFzJGpnjVIon/AHbM25mbIAXALdv8KfitceJtUTQ9WurS/u59Ph1ew1TTrd7aC+tZCwz5TszRyIy4ZCzfeU8btq+UfDrFv8S/hqbnhlHim3dm4AuBqMZkB9DlWOPY+lYvgrxtpvg/xh8Ob24kbyxoGp3CxQjc8kE16rW2B2BVGwTx70V1Tp0pOdklfX79e/T8SIVZKSbe/wDwD7FmYRxOxYIACSzHAHua+PPG8NsuvXcdrqb6uTIzmUMWQZOThj976jj3ruNQ1zxZ8aL42trG1hoxb/VRkhSPV2/iP6e1ddJ8DYLHwfeWlm4fVZ1A89uwyCQPqOPxr4bE06uZw/dxtFXs3u/RfqztknUWi0PMvhR8N4/Ht5di+QnT40KsfVj0x9K0/EnhfxL8O52Sa1m1zRlPyXUPNxGvow/jA9chvZjzXufw88HReDPDcFkMNNjdK47setdLLCk6FJEDqeoYZr6LJnUymjGnDfdruzKeFhUilLfufKdl4x0rUG2RX0SzDrDMfKkH1RsMPyrSN6ix+YXUJ13E8fnXtev/AAk8L+JDm90q3c9fuCuaT9mbwKlwZRo9vk9vKX/Cvs455C3vQ19Tznl87+7JHkl3410q0k8oXi3Nx2gtAZpD/wABTJH41v8AhfwB4h+IkqG/gk0LQTy8Zb/SJ19GI4UeoBOfXGRXtGgfDDw34aUCx0qCLByPlHFdSiLGoVQFA6AVwYnN6lVctJcq+9nRSwMYO83f8ijoOg2fhzTILCxhWC3iUKqoMDitKiivA3PVCiiigAooooAKKKKACiiigAooqOSVYY2d2CIoySxwAPWgNwBwcdFr5O/aE+K9v4x8TR+D/A9omreIATFcasnzJajoyxnpu9W6DoMt0f8AFv456x8VNdk8CfDRne2c+Vf61CSFZehWNh0X1Yct0HHJ9W+CPwG0r4WaRGTEtxqcgBluHHzE/wBPpXHKTrvlg7R6v9EfQ0qMMtiq+IV5vWMe3nL9EfLXgb4MyWXx+0Hw5cJJcPYJHqF/M6nDPjeMe2Sg+u6vu7VNBsdZsfsl7bpPCV27WGaF0Ozj1Jr9YFF0y7TLjnFaHTjFa0aMaKfL1ZxZhmFTMZRlV+yrevdniGt/s5LbyyT+GNXuNIySwtgQ0Of9xgVH4AH3rm5vhL8RrUhUvNKuB/ektGJ/SQV9JhQDSkV7FPMcVSVozfz1/M+fnhKM3dx/Q+dbH4F+MtTkC6lr8VlbnqLKAIx9sncR+BFek+CPgvoPgxjcLG17ftgvdXLGR2PuzZJr0HijNY1sZiK6tUk2vwLp4elT1jEAABgDAp1FFch0hRRRQBE6K6lWG5TwQa+Y/Fnw0/4Vr8RYn0/XNVn0vWbDX7ptKnnH2aB32zttRQAfnlbBbcwGBnAAr6fzk18u+LNZ8XXnxDvbjxL4b8Q3llYf2lY6fb6DpELxfZ5m2Rym4a5y5MSIxXYuGYjtz14W93rpb/hjjxNuVaa3/XUP2Y/jTFoXw38P6P4oIs4IbNPJ1BxhFQLwJPQY/i/P1ql4Mgl+IfxM8PyXUTlSZvG2oxsPmWS4BhsIj6PFaR7CPdTxXHab4a1fVfC1j4K17SruzsJ7q00vT7/ULFbC5e1VGkvd6rNIMLBFIA+R8zj2re+C/wATr/RfE/iHxjqenMdF8U3nn2pEe2SK0UCO32/9skTKnvk8c555uWXQnUrS5k3o10T7+Ryxk5uMZbIq+AvCmnfE7UfCel+IYI9Rs/8AhA4vEGyUblN9fSSyTzrn+PcMhhyM+9dr+z/rt3f/ABNsp5pTJLrngPRNWvmJyZLpvPQyN7sqIP8AgFcvf6FqvheHS20C21u4gtdPm0Wz1rQLCG/iu9MZyYYWR5o2guIVO0M4KZyTndtX1f4HfD++07WdR8Ualpj6Is1lbaVpelTOHls7G3UiNJGUkFyzO5wSBvwC2Nx9GpUjOm5Rkmnt+f8AwR0YS5lptv8Ace1UUUV5Z6oUh6UtFAEbIJFKnkEYNfK3w7b/AIVl+1pr+gn93YeIoWliXoC/MgP5rMPxr6s6V8r/ALUif8Ih8V/h54wQFUiu1inYf3Q6nH/fJkrswj5pSpv7Sa+e6NKet13PqmimRuJI1YcgjNPrjMwooooAKKKKACiiigAooooAKKKKACiiigBuMV4Z4i/Z51S9+JWo+MdH8S2dlf3Mwnik1DR47ya1PkrEVilZgVXapwO29vWvcj+lBOT7VpTqTpX5OqszOdONS3N0PkbxZ8GH+D2n3N3f6t5+j+Ibm30vVYtF0RoLeK0DvNM8sUAckyKrQbscecO1erfs+adPb+H9e8Za3E1hf+I76XUZFu/kaCD7sKPnoUiWNT/u12njn4k6L4ItyL5xcXjDKWUWGkb0J/uj3P4Zrx6RvFvxpvVRlNhowbKwJlYlHYn+8fc/gBXJic1cv3NNc0+tunr2OeNKNOfu/ccn8YXtPEniC4tPB0GnatZXV0by6sNb00XlkbsjaZ4F3KyMQSG52k5O07mLdP8ADP8AZ21PUtbk8UeN7/8AtDVJ40hCJEsMcUKD5IkjXhEHPA9SepJr2LwR8LtJ8HQKyRie6/ilcZOa7UCop+3qU+XEyv5JJJfqy40YqXO9ynpekWmj2qW9pCkMajACjFXaKK6tjpCiiigAooooAKKKKACiiigAooooAKKKKACiiigBvGKKMVk+INfsPC+k3WqardRWVjbIZJZ5mwqj/HsAOSTgUm7asEnJqMVdsuX19b6ZZTXV3OlrbQoZJZpWCoigZJJPAAr5I+IfxW8Q/tGa/L4O8CedZ+F1bZe6ntKtcjPI7EJ6L1bvgcVU8S+LvFP7V/iX+w9CSfSfAlvL+9kxte6IP3n/AJheg6nJxj6a+G/wx0n4a6JBp+m26IVX5nA5Y9yT3Ncd3iNFpH8/+AfQqNPKo81RKVbot1Hzfd9l0Mz4RfBzR/hZocVvawK10RmWdhlmbuSa9Fx1oA5pBjmuyKUVZHhVas60nObu3ux9FFFMzCiiigAooooAKKKKACiiigApMUtFAHF/EH4XaB8ToLWLW4rom3EgiezvJrZwsgCyITGylkYABkbKnAyKs3/w70S88Nw6KtlHFaW8YjhCjGwAcYrqTR2ok3OPJJ3S6EKMU20tWfOFxYeI/ghrLXdgWu9HkbMkDZMbj39D6MP1HFe0+CvHul+OtP8AtOny7ZkA861k4kiPuO49CODW7qGn2+p2r29zEssTjBVhmvCfGnwx1TwNqY1/wtLJEIzuKx9VHcY7j2PFeK6NTBtzoe9DrHt5r/Imzhtse/k8UoNeb/Db4v2XjFVsb8Lp+tAYMR4SUjqUz3/2Tz9a9HAr0KNeGIjz03f+tmaJpq6HUUUV1DG9K+Xv2ude0Lxp8PdRi0vUre91Dw7qUS3kMZO+BiWjwfxYjI4yCOor6hI3V8M/tY/DS98E+Jr3xBpxddK1z93eqv3d+4MM/VlB+o967sDGLrK7s+htSSckfT/hb4ueH5LXwZpV/qKxa7r2nRXNvbbWJYGPOSQMLnDYzjJBxXo9fGn7Ivgi/wDF/iZfGOrM8kOmW6WFgW6AIgT5fYKMfUtX2bWeKpwpVOWLvbf1JmlF2QUUUVymYUUUUAFFFJ0oAO1ITwK4bWvHtxPdy2Hhy2iv54mMc+oXD4tLdx1Xj5pXHdVwByCynisSXw7daq27W9f1PUyf+WEM5s4F9gkO0kf77N9eldUMNKSu3b8zmlWSdoq56oGpc5715F/wrnwsTubRrZ5P+er5aT67ic5/Hipo/Caaad2jaxqujSDtDdtNEfrFNvT8gD79MbPCLpL8P+CR7eXWP4nqwozXnmn+O9R0CRYvEsUMllnA1mzBWNfQzxEkx+7qWXudgqx45+LWjeC4DH5g1DUWXMdpbsCeehZuij9fQV5mJawkeas7LubxqRkrnZX1/b6ZayXV3PHbW8Q3PLIwVVHuTXivjH443mtXTaX4Ogd2b5WvmT5j/uKen1P5DrWFDpfi340ags9/I1ppatlIVBWJB7Dufc817N4N+HWleD7VVtoVefHzSsMk15F8RjdI3hDv1fp2Qe9PyR5z4H+B8tzcDVPEkz3E8h8xo3YszE92J6mvZ7Gwt9Ot1htolhiUYCqMVZxS16NHD08PHlpq39dS0lHRC0UUV0lBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAzgilorj/iV8S9E+FvhyXVtbuRFGMrDAmDLO+OERe5/QdTgVMpKKu9i6dOdWahBXb2RpeMvGekeAdAudZ1u8SzsYByzcs57Ko6sx7AV8nSyeKv2uvFaPJHNo/gSzl3Q2ucGXHG9j0ZuvPRckDnJL9C8M+Kv2rPFsev8AibzNO8KW75stOUkIE/qT3bqe2BgV9beHPDNh4V0uGx0+3SCGNQoCKB0rlSdfWWke3f18j33KnlUeWDUq3V7qPku77voU/BPgjSvAeiwadplulvHGoX5RjNdDjn2ryr4i/tOfDf4UeKofDvifxENP1aSNJjCtrNMI1Y4UuyIQucE8ngcnAIJ9Pt7mK7hSaJw8UihlYdCDXYo8qVkeDUVTSdS+ut318yzRSAiloMwooooAKKKKACiiigAooooAKKKKACiiigAooooAKY6LIpVgGU8EGn0UAeO/Er4MpqLNqmif6NfId+xOMkc5Hoap/D74zz6ddjQ/F5MFwh2R38gxn0En/wAV+frXtp4ryf44aD4ej0VdQ1IPb3DyCKOWCPcxYgnn24NeRicP7NvE0ZKMlv2fr/mZyVveR2WrePNK0TXtK0m5dxcaj/qXUAxjsMnPcnAxn8K6Wvia61q6ZLWAXbXEVk2bWRs7oxnOBnoMgHHavqfTPiJYP4K07XLuQr9qRUWGIbpJZ+QY0Ucscg/gCTgAmufLcwePqzp21VrL8H+JEaqd7nYjjqa5v4geCrD4g+GLzR79Q8NwhXPdT6j3Fcxcaj4l8Rks92fC9ifu29p5c12w/wBuVgyJ/uoDjs9UX8A6Jc830dzqrn7z6jezXG78Hcj8AAOmBwK+uhhZLWTs/LX/ACM3iGvhX6HafD3wVZfD7wtZaLYgCG3QLu7se5PuetdNkdq8kT4e+HYDm1sX09uz6fcy2zA+oMbKc+/sPSrkD+JPDuG0/WG1q2XrY6wRux6JOi7gfdw/4dQTwsnrF3fnp/mCxDv7y+7U9QNAOa57wx4utfEqSxrHLZajb4+0WNzgSxZ6HgkMpwcMpIOCM5BA6HtXDKLg7SWp0xkpK6FooopFDc8157418Qy6xqknhuwmeCKJVfUrqJirqrcrAhHIZgMsRyqkY5YEdj4h1mDw7oeoapcttt7KB7iQ/wCyqkn+VeUeFILi30aKe+/5Cd6TeXrHqZn5YfReFHoqgdq9DBUVNub6fn/wDjxFTltFdToLSKCwtore2iSC3iUJHFGu1VUdAAOgqbzveqPne9fOH7Tn7XMfwavF8P8Ah+0t9V8SPHvmadj5VoDgqGUcsxBzjIxwec4r3qeHnVnyQV2znpU51pKFNan04Jvel80etfl3/wANp/GyScXCavF9nznyl0uApj0zsz+tfXv7J/7RGp/HfQtZ/trTrey1PSHhSSW1JEcyyB8Hac4I8s55xzwBXRWwFWjHmla3kzrq4SpRjzytY+hWlDgg4IIwQa850XwDpfh3x3DNqaJJol/KIbZUG0Ws5PyqR/cc4Uf3WwOjDHdeb71T1ewh1rTLmxnJEU6FCyHDKezKezA4IPYgGvKq4SnXSVSN7beT7nnqbT5luerW1tDZwrFDGscajAVRgVOK5T4a+IJ/E/gzT7u8Km/RWt7vaMDz42McmB2G5Wx7Yrq+n4V4E4uEnF7o9aMlKKkuotFFFSWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADTxR2oryj43/AB60r4P6WI8DUfEF0p+yaajfMT0DvjlUz+JPA7kRKcYR5pPQ2o0KmImqdKN2zW+L3xh0T4P+HTf6lL517LlbTTkYebcOPT0UcZboPckA/ln8Z/jx4q+MPii91PUJpoIIHMKRQBgtsu4gKP8AnmCR9Sep7V9sfCf4Ka58UfEp8d/ESV7m5lYPDaSjCxrnKgL0AHZe3U81F+3f4J0Hwp+z1eSaPpFnpslxrNrJM9tCsZkYlss2ByT3PeuOalVpTk246Nq1r6L59T7rIq+Ey7M6FBU1WcpRjJu9tWk0lpeyuvP0Kn/BOTxjrfiXwV4otdX1W71SKxvlW3a8laV41aNSVDMScZ7Z719fXFzFZ28s00ixRRqXd2OFVQMkk9gBXxT/AMEx/wDkWfGv/X/H/wCilr139uD4jn4efADWo4JfL1DXiNHt8DJxKD5p9v3SyDPYla6qc70Kc5v7MW3/ANupts8bNsF7TP8AEYLCxSvVlGKSsl77SS8j4W0D7R+0/wDtYG/dHktNU1Y3rK6jMdnEQIlYf7ixIfrXcfGX9pn4g/Fj4mt4I+HGpXmjaPBdNYafBpMxtp7sxgq0rzAhgDtYgAgBduQW5ruv+CbHw18yfxB41uYuMixtGZew5dgfcnH/AACvnW6t9c/ZQ/aBE9/pZnuNFvZZLeK6Yxx31s25VdHweGU53AHBGCMgiuO840YSd1zSu7Xuk07LuraJn6Io4TF5ticNTjGbw1LkpKVrSlGybs3aTvzNJ7nZ6F8cfjD+y58S4dN8Y6pqt/AgilvNI1W9a9SS3bo0TszbTjONpAyuCO1fp9oer2+v6RZalaNvtruJZo2HdWGRX4//ALRXx3m/aF8dxeJLjSYNEa306OwS1huDP8iySOGZyq5OZW7DoK/UH9md5ZPgP4HM5Yv/AGXBkv1+4K0w83KdWndtRas3vqr2vu7HzfFeAVHB4DGzpRp1KsZqUYWSvCVk7R0Ta3t1R6jRRRXafnAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZXiDw5Y+JrL7LfxedFnOPetWijcDxvxj8H/AApoejXmqztNbwW6biIvmZz0VVHdiSAB3JFZvw/8HN4btmuL4iS+kLFI929bSNiD5SH8BuYfeI9AoHR/ES/Or+NdK0QHNpp8P9p3KdmlLFLcH1AIlbHqintSmXPevVweCp017VQSk+ttbHl1pqU2lsjjfiH8adE+HLr/AGvqFpp0TOIlmvBcMrvjdtAhikPAwckAcjmuK/4a+8C/9DVon/fnU/8A5CroviV8H9I+JJUanaW99EsgmWO4eZNj7dpIMboeRjIOeg6V8xftG/BTw58O/Bkt7pulwWN7FqVlAstvPO4aOaK8ZwwkkccG3jwRjv61Vf21NuS+E2p+znZdT3v/AIa+8C/9DVon/fnU/wD5Crv/AId/FfSviRafatJura/tC8kS3VoJhGZECF0xNHG+VEsZ+7jDjBPOPln4D/AXwx488D6ReX2kW13eXEEs809xcXKkkXEsYAEcqgALGO2ck19K/DX4Y6b8NrEWmmwQ2dqrySrbwNIy+ZIEDuTI7NkiKMdcYQcdcuh7ao1J/CKp7ON0tztdW09r0w3VpMLPVrUlrW7AyUPdWH8SNgBl7j0IBHaeDvFCeKtJM/l/ZryCQ293altxhmXG5c9wQQwPdWU8Zrj/ADveqegaifD/AMRrFgdtprkTWky9jcRqXib6lBMpPfag7CtsTQ54NrdamNKpyTXZnr1FFFeCeqee/HKcp8O7yEHAuri2tT9JJ40P6NWB5vua3/jpZy3Xwy1Z4VLyWoS7Cr1PlOJOPf5a4+C8S5hjlicPHIoZWHQgjINfSZalKi15/wCR5GKdqny/U0fO56mvzH/aL0K7t/jd4v8AtoZpJL95kL5/1b/NH+G0iv0q833ry74z/ArRvi/bx3Ekh03XIF2Q36LuyuSdjrkbl5PcEfmD9Tl1aGFr81Re61ZnTl2LhhqvNU2ehnfAn42eBfFXgzRfDaz2ul6jBaR2smlXiiNZWChW2Z+V9xycZLHPIr0/wr4C8OeB7jUZtA0e10l9RdZLn7KmxZCoIX5egAyeAAOT61+fvxK+Cvib4VkS6vYrNp7NtTULNjJCT6E4BU+zAZwcZr279kn42alrOpSeDdXuZL2NYDNYTzNukjC/ejJPLLg5Gem0jpjHbjcrpqk8RhZ80OvdHfi8EvZyxGHnzR6o+tfN9zR5vuao+d70ed714HIfN8yOg+CcxEni+1zlYNXLD/gdvDIf1c16aa8u+A0bT6b4h1LrFfarK0bf3lQLED/5D49sV6iRXx+Lt7edu57WH/hodRRRXIdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAw9OlA7/1pT6ntXz58ef2jf8AhGLlvCPgwf2p4uuD5TvGA6WefXsX9jwvVvQ5zqRpq7OnDYapi6nJTXq+iXdvojY+PH7RNn8MoRo2ioNX8XXQCw2aDesG7o8gHOfROp9hzXEfBL9n+/1jV38bePZn1LW7p/OCTndsPb246ccAAAcVqfAf9nT+w5T4m8Vu2peILomZ5JiXIZuTyeST3PU19GLGsagKNqjgAVhCm6j56nyXb/gnqVsTTwlN4bCPf4pdX5LsiOGCOCFY4lCRqMAAdK/On9r79rnSfir4a1fwDYeHr6zkstWH+n3EybXEDsp+QcjPbmv0aIzXm2tfs5fDDxDqdzqWoeA9Au7+6kMs9zJp0ReVycszHbySeST1ronDnpygpWb0va+nXS6Msox1DLsbDF4ik6ig00lLl1TTV3aWnkfAP7IP7T2mfAUalpOp6HealHrF9C32m1lQeSpCoSVP3vXqK3v+ChvxL/4TX4p6N4W09mnttDs1ZolBy11chXxjv+7EOPdmFfbNl+zL8LNOuobu28BaBBcwuJIpY7CJWRgcggheCD3r4q+Hf7NfxI8bftJ/29418MT6VZHVZdTu5JJFeLcHLJHGwY7lB247YQe1ZSoN4eFDm5tk3a3updrvorfM+ywmc5fVzmvnnJ7JqM5qLlz3qybtb3Y2Sbv8j7W/Zv8Ah3H8L/g74e0UKouFt1knZRjdI3LN+JJP4188fEX9unwbD4w8TeF/Ffw2k1aPQ9SudPhlaWGcTGKQoXKyKNm4pnALcYr7TiQQxqijCgYArz7xn+z78PPiHqzap4g8IaZf6lJjfePAFlkwMDcwwWwBxnOK6W272aT72v8AgmvzPhMLWw8aznjISnF9Iy5Xe+93GX3W6n5o65JqH7WXxtt4vDvh2LQ7GRIrSGxs1BSxtVJLM7KoBYlnbp1YDoM1+rnhXQYvC/hzTdKhUJHaQJCAOnAxWf4M+Gnhf4e2jW3hvQrDRoCclLOBYwT68CunAwOvPrWMIcl23dyd2++llpray8z0c3zb+0vZUqVP2dKkuWMU72u7ttu123q9B1LRRWp8+FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4dLcG5+IvjOZjzHcW9qPosCP/OQ1oeb7msbV0OmfFLxRbv8AL9rS3vYx/eG0xt+Wxc/UVbE3HWvs6EVKlBrsvyPn5u05J93+Ze833NfMf7a+p2un/Du6lu50gjOs6UoZzgE/Z9SOP0NfR3ne9fD3/BU6Un4EAqxB/wCEo0fkH/pz1eubHxtQk/T8zfDO9VHuf7It/Be/DXw/NbSrNC1lNh06HF7c1755vua+Q/8AgnPKR+zn4NJJJNpeck/9RG7r6u873qsFC9GLJxEv3jL3m+9YXiu4NuujXSkhoNYsSP8AgVwkZ/RzV7zsd6xtf3ajqnhrTY/mlutWgfb/ALMRMrH8Ng/EiumpFRi29rMxTu0kfQ6nKg+1OpqjCge1Or4o+gRU1CzTUbGe2kUMkqFCD05FfOOgxy+HJ7zwzd5FxpLCOIn/AJaW5z5TD6AbT7ofWvpfPSvN/it8O5fEUUer6SVh1yzBMbEcSr/FG3qpwPxAPUCvTy/ErDztL4Xv/mcWKourG8d0cR9o5618nSftp6n4T8b69pPiDRIr2ytr2WGE2r+VLCqsRg5yH6D0PXntX0fp/iBbueS0uI3sdSh/11nN99fcf3l/2h+hyK86+Jfwf8BePb2W51TSSNTbh7yyfyZGP+0ejH3IJr73DxpS96S5k10/M4MJVowlKNeLaf3o8b+N37XOi/EHwFe+HdI0m7ja+KCS4uyo8sK6uNoGcklcdsfyr/sXeCb/AFTxlN4sljaLTNPikhilIwJZnXaVHqArEn0yvrXd6D+zH8NdKvBNPYajqChtwju7sMn0wiqcfj2r3nRYtP0zTYbXS4IbSxiG2OG3QIid+ABxXdKrGnRdGjFpS3bPRrY+jRoSoYaLtLds6Dz/AHrK8Q6tPaWSwWI36neSC1tEIz+9boxHooyx9lNVNU8Q22kRqZnZpZDtigjG6SVv7qr3P6DqcCqPhvxRP4W8Xxa14h0Od8R+XFFuwbZSckrngk8Z6ZwOQABXyWZ5hRy2mpVL3e1le3m/I8ajB1Xbp1Z9GeBfDUXhDwnpmkwg7baBUJPViByT7mugxXN+FPH2ieMog2m3iPKBlrd/llX6qefxGR710nUV8VGtGuvaRle/U+jjZL3dh1FFFaFBRRRQAUUUUAFFFFACAYoqveX9vp8JmubiK3iHV5XCKPxNYqfELwu8/kr4j0lpskeWL6LdkdeN1NRb1SIcordnR0VDb3MV1EssMqTRt9142DKfoRUp6UixuDmjPvUTukQ3uwVVGSTwAK+VPi98d9W+J+tv4D+GjtJA58u+1mEnDL0KxsOierDlui8cnGpUVNa7vZdztwmDqYuTUdIrVt7Jd2a3xw/aJvtQ1eTwL8OSbzW5iYrvUoDlbbsyxt/eHd+i9BlunSfAX9nay+H9quq6qBf67ON8k0nJBPJAz7/n3rY+B3wD0v4XaUkjxrc6rIA0tw45J/oPavXqzhTbfPU3/I7cTjKcIfVcJpDq+sn3fl2QoAUAAYAp1FFdR4oUlLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACAcUhGBS9BXFfFDxXq/hLRornR7OG8uGlCuJgzKq4POAR3x3rGpUVODm03bsrsTdtTk/jlpUmmXGmeLYELR2IaC9Cjk2743N/wEqrfRT61gLcq6hlbcpGQQeDWZe/tC6vewS2t9pGnzROpSSMbxn/AMeNc5pl1feHNMhurqykh8OzkmCZcsLQZ+63H+r9D/COvHT1sizvDYuTwqbutrpr5Hi4qF26kPn/AJnb+f714V+1T8AP+GifBa+GpdXutEh/tGz1P7baWEd6+63iu4vLMTzwjDC7J3b+PLxtO7I9hivUmjWSOQSRsMqykEEeoNONz719rWwsa8HCWzOCnWdOXNE82/Zx+D4+B3w+0nwsmo3GqwaZDLEt7dWqWskxkuJZyTEssoXHm7fvtnbnjOB60bj3rO+0+9H2n3qqWGjRgoR2QTqucnJmiJ/ervwp01/FPjm511lzp2ko9jasejykgyuPYFVQe6v61yemJf8AxB1E6VoJb7Nu2XeqIfkjXusZ7v2yOF+owPojwx4cs/Cmi22mWMaw28CBQqjFeDmeKjCLower38jvwlFzanLZbeZsUUUV8se2FFFFAHC+PPhNovjuMSXUHkXsfMV1CSkiH1DDkH6V4xq3wL8a6HM72V7b65b5+VLpNsmP95cfqD9a+nwOOtMkYoPlGTXbh8ZXw2lOVl26HPUoU6uslqfJF74P8bQLt/4Ra3Dj+MXz4/Lyv61e8N/DLx9rN35MslrocD9WjXzX+oLcf+Omvp6W2ec5f5qltrMQMWPXoK9GWcYlw5eZfcYrBUlvd/M8+8C/BPSPCMwv59+qasw+e7ujvc+2T0HsOB2FdrrHhnTtetmhvbWOVSMZK8itWlxXh1Jyqycpu7OuMYwXLFWR4Z4p+Ab28323w/cvDKh3qgYgqfYjpWF4V+Lfjyw8QTeG49Ij8T3Vq/kzTXl0LSOCTZvEbT7W3vtw2xVd8EE7VOa+juleEfEr4YeHdC+KngTxVZWHl65qPiN0nuDK7D5tMvN21SSE3eWhO0DJUE5PNclDBYdVfaK8X5bN+autPQwqqUUnDTVXOy+EPxq0L4weGLLUrKT7DezKfN02eQebGw4YDpvAIPzD9OlcR+0P8SNf0abULHw3rU+iy6VpsdxJJaQQSvcX11MIbG3PnRuAmVlaQKA+0oQyjOfOvgj8GW1j4L6FrenXf2e5KPK+5toBDE5z2rkYfFF0useBTqMU+tXGo3T+MdU81yX+z7TbaapYg8eShfaejDPXmuunKdGtUlXiuSOzWq9Gt9jnnUm4Ri92t0fQ3in4+t4T0+JTb6ZczWrR2uoahquqLptml2UDmBHKO0jhfmIVcL0LZDBey8A/EyHxhdXel3di2j69aRR3Eti8yzK8MmfLmikXiSNtrAHg5VgQMV88/Da7svEPjv4V3N5sMWoL4mvhFcY+ed9QjJyO7AMR7DgcVqfBl/snxD+HEdvwp8P6nZtj/n3hvUW3H0C7sf8A169GVGlKm3Farr9/+QQqzck29H0+4+rKKKTgCvMPSKuo6hbaTZTXd7PHa2sKl5JpWCqg9STXn194k1vxY7Cwkfw/ozcLcNHm9uF9VVhthU/7QZ8Hohqlfaz/AMJzrMlwxzoenXDR2kXVbmZDhp29QrZVB0ypfnK7dPzwR2r16GFUUpTV3+RwVKrk7Ren5mZD4G0FJxcXFgup3Y/5etUdryb8HlLED2GBWm2kaa8Pktp9q0WAPLMC7cDpxijz/pR5/wBK7ORnOuXojKbwNosMzT6fbvod0eTPpMrWjMexYRkK/wBHBHtWlZeM9U8KEL4hkTUdIXrq0MeyWAes8Y4K+siYA7oACwd5+euKbI4liZG5Vhg1E6SqK0ioy5HdaHgvxJ+LOv8A7Q/iCXwZ4DE1r4aDbL3U9pVrkdx6hPRerd8DivefhB8F9H+FWiRQWsIe8YAyzsMszepNc98PNJ034XeJBY29ukela1O3kyYANtckFtmf7jgHHowwOGUD2mvnZYWVCd5u7fXy8j6WrmKr0lQoR5YLp1b7t9RaWiiqPPCiiigAooooAKKKKACiiigAooooAKKKKAExS0wsEBJOAPWuFvviZ9ulaHwzYf24VOGvZJfIslPoJdrGQ/8AXNWHUEg1cKcqjtFGcpxjuzvaK8yebxlffNP4hs9OB58rTtPDFR6b5WbcffaPpSJF4stjuh8XeefS+02F1/8AIflnH411fVZd1+P+Rj9YX8r/AA/zPTc0A5rzy28ea5o5H9u6PFdWg+9faMzyMv8AtNbsN4H+40h9q7LR9astfsYr3T7mK8tZM7ZYXDKcEgj2IOQR1BGDXNOlOnutDWNSM9FuaVFFFZmog4oNVru6hsreWe4lSCGJS7yyMFVFAySSeAAO9ZnhjxnoHjaye88Pa3p+vWaOY2uNNukuI1YdVLISM+1Fm1e2hN1e19TbxRiuc8c+MbfwNoJ1Ke2uL+Rp4bWCytNnnXE0sixxou9lXlmGSSAACScA1jeDPi/onirwbceJbtv+EdsrW5mtLo6tPFGkMkchjb94GKFSynDBsEEHvVqE3HnS02Jc4qXK3qd5waOnWvMtR/aG8DRWTTaRr9h4klx8sej3UdyM9tzqSq/ic+xrz++8V+NvixcNbWET6Zpj8GO3JGR/tP1b8MD2ry6+LjSn7KEXKfZfq9kL2kX8Op6f4z+Mug+ES8Cy/wBp6gvH2W1IO0+jN0X6cn2ry271Lxv8YJjCqmw0on/UwgqmP9o9W/Hj2rt/BfwG07R/LuNUP2u4HOz+EV6laWUFlCsVvEsUajhVGK5/q1fE64mVl/Ktvm92HK5fEfLWk/DGe/8AHp0NUc29qw8+Zhww4Jx9elfTS+HrH+yE017dHtVTZsI4q3Dp9vDcSTxwokr/AHnA5NWMV04TB08Gpez6u/8AkvkVGKjseGeI/wBnp7WeS58J6k+lFyWa0Kh4GP8AuHgfVcE+tcRrPh3x34XtLm6v9M06e0tkaSS5E7wKFAyWPD44r6oFfJf7YvxeMjnwNpMxKptm1SSM/QpCfzDH/gI9a+vy7E4upVjRhLTz1sjy8ZSoU6bqSWvl1ZY0jR/HXiWxtrzT9EsEtblFkinN28qspGQw+ReMGux0T9n3VNXcP4r1cz23U2Nsvlwt7MByw9mJHtXO/sbfEl7rS7nwRqTlbuyX7XY+Z1aBsFlH0LBh7P7V9OmjH4zFwqyoylZeXVdAwlGhUpqolr59GZ2geHNP8NWEdnp9slvCgAAQYrUoorwNz1wooooAKKKKACkKg0tFACAYpaKKACiiigBvXvXz7418IfE64+KB1uGztPE2iWN79s0iym1/7BDbk2xhO+JbGRmYeZOd3mkHeOBjFfQVIevtWtOp7O+id+5jUh7S2trHyBZ+FfHfw38N3XhbUZYtD8N+IzHodhYHWBfNbNK7tcyRy/ZoCgW2EzAHecoORXonwB8Naf41j8UeMrmziey1q8MOmpt+VLCFRDb7PRWRA+B3c17H4k8KaP4x037BrumWmr2O8SfZ72BZUDDo21gRkZPPvV7TNNtdIsorOyt47W1iG1Iol2qo9AK2qYj2kLWs3uZU6PJK97pbHzR8Uf2fNUt7eC00PRX13SLS+n1HTnstWXT9Q02Sclp4VLQyJJC7nf8Awsp6BsA1geEpfFfw28bR6/rPhe2020t9Oh0ix0eCd5ls7WMkgCcgF3JYlnK/NxkcV9g4zWZr9lFdaVc+Zax3ZWNiscgyCccCuKvOdWk4QfK+63f36fgNUIqXMjxXxl8cH1C30q/8O3klrJbSFruwuFAMgOMA/wB5eCODnnPFdr4s+IEepfCuTVNHmMV5qQSxtiD88M8rCP8ANCxb6LnpXguo+FNe1S8dxonkMW5W3jYKPzJqzYaZrnhu+0Cx1GGW30y61RJAjDgSrDKQfbOAPy9K8DKqmMnj1GrBuDtd2a262ffyM6k5xjJ+R6/YW8GmWNvZ2yCK3t41ijQdFVRgD8hVjz6z/O96PO96/VPZnnc1jQ8+jz6z/O96PO96fIHMaHn0efWf53vR53vR7MOYj8SWDa3od5Zxv5M7pmCYHmKVfmjce6uFYfSvSPBHiEeLPCek6tt2NdW6SSR/3Hx8yn3DZH4V5351fIU37Y/x2+FGva3onh/4Kw+MfBljqd3HYahbzyJPNEJnyTtL4+YkD5BwOh615WYU0qal5/n/AMMdeFk/aNeR+kNFfnVb/wDBVnxho+F8U/s1+LdJVeGnt7mWRWwOSA9qgxnH8R69a17H/gsn8KoJVg1/wT460K4Y4O6yt5EUgfNkmdW4PHC/lXgHqH39RXxvof8AwVl/Zz1bZ9q8SarohbBb7dotw23jPPkrJ9OM/lzXoGh/8FBP2d/EIT7L8VdEi3dPt3m2nbPPnIuPx78daAPoiivN9E/aO+FHiXb/AGV8TfB2ou3AW1161kbpnBAkyDjnFd1p2r2OrwedYXlvew9PNt5VkXpnqCaAOO8TfFFNP1ebRdB0m48Ta3AQLiC3kWGC2yu4LLO/yhypBEa7nwQSoU7q0vhl49tfib4J0vxLaW8tnDfRb/s85BeM9CpI4ODnmvL/AIhfDDQPDvxi+H3iiyt5k1XU/ElwJ2e4keMbtHvy5RGYqm4xIW2gZKgmtf8AZOdY/gF4ad2CqsTksTgAbjzXXOFP2SlDy/G/+RxwnNzcZef4Wt+Zk/tAfE/xB4bnvrLwzqf9mzaXYQ3EzrbxzNcXl1OILK3IcEBCVlaTbhguwgqM57G9+K89sYdK03R5vEniWOJDeQWjrBbWrlA22Sd/lDkHIjXc+CCVCndXjHh1G+KfxP8ADxfLw6hdzeNLzcPu2+Da6Wh9jBG7lez89812vxB+GOgeHPjB8PfE9jBNHqupeI7gTF7iR413aPflyiMSqbjFGW2gZKgmt5RpJKnJapN7dezMVOpL34vRtL5eXmeofDLx7bfE7wRpfiS0t5bOG+i3/Z5iC8Z6FSRwcHPNdX1NeO/slf8AJBvDP/XNv/QzXr0kqQRtJI4SNAWZmOAAOpJrhqxUajjHZM7KcnKCk92iUDpTSwAJJ4pscizIrowdGGQynII9Qa4X4s6xJFpdlodrKYbrWpjatKjYaKAKWmceh2rsB7M6ntSpwdSaiupU5qEXJmXq+st4/uJI0lK+GEJQKhx/aRHUk/8APHPAA+/yTlMbtBJFjUKoCqBgADAArPtxHaQRwwosUMahERBhVUDAAHYVJ53vX0UKKgrLY8vnbd3uXvOHrR5w9ao+d70ed71pyBzF4zAjrWTPHd6JfS6vooxdMQ11Y5AivlHHOeFkxwr+wDZHSx52O9HnZ71DpKSs1oPmsd1oOt2niHS7fULGUyW8oOM8MpBwysDyGUggg8ggg1p8c15X4O1M+HvHcmm7sWGtxvcxL2juowocD/rohDY9Y3PVq9UGK8CvS9jU5enQ9GlU543PAf2rdC8VN4YvfEekXOlzaPoGkXmoT6bqsTyxNPEnmpJ5QISUgIQBJlUOGCk4I0vhKdnxz+K6jhfN084HT/jzirN/am+Kdho/hjVvARm0y1v/ABJod9bre6vq0Fhb2+9PJUlpD87Zk3bRzhSa8f8AEHxTmsfjJrj+EPFOg6xpni25tII20HWYLi8jZLYIS8aMWVAYzlx0yMnnFbN1HhrxjzWTta2uqOKVSEKzd+q++zX6nqf7SXxFXRb2e4t5Fkbwjpr6mEGGH9pXW60sEYd8brliOw2N6GvFdP1/VLT4d38GnW0cEnh230vSdHiuEEyR3d5MVmu3DDa0wj2hGIO3c3UO2dzwF4KT4hat4V0S6Zp4NVupfGeqMTktb82+nKT/AHXjV5cHowz713Pxz8JWvhK/1tzNZ6HpWpw6Vd2N/fyCGzW+srhnaCWQ8R+bHsCs2BkN1xirpqalCMtGlqt9brr5amUrzTqPb/gHG6nomoaLdWP/AAkt0NZ1zw94h063fVJY1E9zY3sKgwzMoG/bK24E8jao9c/Y+m2Frp9tHHawpDHtGFUYr5Mg1A/GDxhBDp0lneXOpa7Z6jqMemXaXkOm2lnAESOSePMbTPMC21SdqnB5AJ+vI1CKF7AYrLExinGy1tr9y/W514bVSa2uSUUUVyHaFFFFADCODXxb+0p8MrHwVK0to7XGseKdVaXDtuIXJZgPYu6f5xX2l0P0r5Y8ZTH4sftVaXpUP73TfDKBpSOR5gIZj/30UX/gBr1MulKFVzvok2/lt+J52NjGUFG2rdl+v4HeaF+z9a6T478M+KbKd7Z9PtVheNDtEn7sp83rwT+le2GmqoRQo6AYp2eK8+pWlVacnex2U6cYJ8qsOooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAjESL0UD8K80+PlqU8I22qquRpN7Devj/nmrYkP4IWP4V6aeBiqGt6TDrmk3dhcIskNxG0bKwyCCMVpRqezqRn2ZlUhzwce544JwRkEEUpuMd65nSftOgXVz4c1Fm+2aedkTv1nt/4HB7kDCt7jPcVref7197BRqRUo6pnzjbi7Pc0PP96PP96z/P8Aejz/AHrX2Yuc0PP96PP96z/P96PP96PZhzljUNUh0yxubudtsFvG0rn0VRk/oK7X4O+ForL4caQmoWkZup0NzKrrkh5GLsPwLGvMGsJfHHiKz8NW2Wty6z6k69EhBysZ93IHH90N6ivo62gW1gjiQYVFAAr5nNaqXLSXq/0PUwUG71H6L9TKn8F6Hc58zTbds/7ArIvvhL4X1GJ459LieNuGQjg/hXZ0V8+eqeK63+yB8KvEO/7d4N0a6L5LfaNPhlzk5P3lPevP9c/4JtfBDWd5Pg3TIC3/AD7QeRjnPHllcV9VUUAfCuuf8Ejvg1qQY2mnXOnMec29/cdc56O7AenSuE1L/gjd4Qhn+0aL4n8Q6XcrnY8V5FgZ69Yt3Q4+9X6S0hoA/P34SfsneOP2ePGVjqsVn4n+IculTTSWUl14t8uxcSQtFue1eFsSKsjruVhxj3B5q++Dvxs0DxT4X0HRPEfifwP4G1e//s680fUNaj1Jp0lDtMsBEKCJVgSRsAZG1iDkjH6S4xisDxj4F8P/ABB0ldN8SaLY67YpIJlt9Qt0mRXAIDAMDg4JGRzgn1rujirWUorpt5eWxxSw+7UnfXr33Pzq1fXP2nLr4leJfHHwbh0CHwZqUiW2nQXsCyM9rCvlRMNyfKpVQwCtj5vc10Ok/Gz4+2l9omtfEr4aa94l1XSbuS8t7LQb/TbbTI5Gt5bcME8trgkJNLndLtyw44FfoLpWi2Oh6dBp9hbRWtlAoSOGJQFUDsBVhrK3f78EbfVRWXt/fcnFNNW1NPY3io3tbXTufmP4S/bO+KPwLkTTtI+BvjnxH4TWHbHpWpunmWkm5jmOe2syWQggFXViNud3OKl+KX/BTbw98S/hv4k8GeOfgx450HTtas5LKd7ZwXVXHBBdY8Hqe446EZr9KJ/DumXP+ssYG+qCvGP2ofhh4s174SanZ/Cl9L0LxlO8aw397DuWOPcPM2/K+1iucNtOPY4IyqT9pJyatfsa04qEVFO5+U37MH/BRXXP2XvEn/CP2t1qvjr4RCTEGma0iQahYxnvAyu6qR/zz3bG5wIyxI/Tnwf8dPCX7Q+u2HinwZqqavosGk7eVKS200svzxyIeUcCJeD25BIIJ8E+DP8AwSl0ptWHib4s65eeOvEEzCWYXsjeQW91JLPjp87YI/hFfRlx4M0z4a+P4dH0a0i0/S5NGRbe3gQRxqIpTkKowBjzhwPWu7L0nWS8mc+L0p/NHWef9KPP+lZ/n+9Hn+9fT+zPJ5jQ8/6Uef8ASs/z/ejz/ej2Ycxoef8ASjz/AKVn+f70ef70ezDmM3xhqy6J/Y2sMdo07U4JmZeoRiY3A+qyMMd81FrXxh8S+ObhrDwxZSWFs3y+fjdMw+vRfwyfeqfjezj16HRdJlXet7q1ohQdSEkEp/SMn8K950Lw1p3h63SKytkhAHUDk18hnWGqVqkI8/LG2qW7+fRHfhU5KWuh494a/Z5TUnF54nf7XIzeY0cnzEn1JPU13+q/CXQbrwjq2h6daxaM99ZTWi31rEvnQGRCm9SR94ZyPpXckUbeK86hShhklSVrHocqtboeafCv4SzeAtS1bVtS1KLVtWv1hh8y3tvs8MEESBI4o49zbVAGcZPLMe9ejT28V3E0U0ayRtwVYZBqXGaOCOK6ZTc3zPccYqKsilpui2Gjx7LGzgtExjbDGFH6VeooqSgooooAKKSloA5D4n+OLX4deCNU125K/wCjRkQxsf8AWynhE/E4+gye1eR/sjeC7m30TUfF2qBn1LWp2mMkg+ZlyTn8SWb8RXN/GXVJvjh8YtM8A6ZIZNE0iTzdQkjOVeXow/4CDsHoWf0r6f0XSrfRNLtrG2RY4YECKqjAGK9Of+zYdU/tT1fkui+e550P39Zz+zHRevV/oaFFFFeYeiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHn/xM+G0fjS0iubN/ses2pL29yg5B7g+oPQg9a8Tm16fQr7+zfEMH9l34basjZ8ib0KOeAT/dPPpnrX1VWN4i8JaV4qs3t9Ss47lGGDuUE16mEzCphfd3j2/yOKvhY1tVozwP7VzSC5x3rp9Q/ZntIXLaDrF7o6dfJjlJjH0Q5UflXkdt4d8Qy/GufwFN4muY4hb+bFP5MIZztDYz5ef735V9TQzKhWTaTVld/I8SphqtNpO2rsdo12I1LMwVQMkk4AFZ2n6nf+Mb0af4Yh+1ux2vqDKTbxD1B/5aH6cep7HvtJ/Zn0oyJJruo3etspyEuZC0f/fH3f0r1nR9AsPD9qkFjbR28ajGEGK8zE5xFrloLXuztpYGV71X8kYPw88AWvgXSvJQme9mYyXFzJy8rnqSf8+g4rr/AFFH0NL2zXy0pSnJyk7tnspKKsthaKKKRQUUUUAFFFFACYpaKKACiiigAooooASvJvjtpUlvZ6V4mgjaRtImLXCoMs1uylZMeuMhsdygr1moL6zi1C0ltplDRSKVYH0rWjVdGoproZVIKpBxfU8Iju0ljV0cOjAMrKcgg9CKXz/esbxDotz8LNUNhdBm8PSN/od3jK22f+WT+i/3T0HQ4GKsC6yMg8V97QlDEQU4PQ+bnzU5cstzR8/3o8/3rO+0+9H2n3rp9mZ85o+f70ef71nfafes2bUbzU9RXRdFT7Rq0uAWA3Jaqf4398dF6njoMms6ijTi5zdki4tydo7nS+AbBvFfxKiuFUtYaDG4Z/4WuZAOB/upn/v4fSvesCuY8AeDLbwR4fgsIcvIcvNM5y0jk5Zie5JJOa6f2r4PF1/rFVzW3T0PoaFP2ULPfqOooorkOkKKKKACiiigAooooAaR7V43+0d8YG+HHhxNM0lzL4o1YGG0SPloVPBlx69l9T64Ndb8V/ilpnwo8KzarqDCSdsx2lmrYe4lxwo9AOpPYe+AfD/gf8ONZ+Jfi6X4jeM8y3Ezb7WBxhY1/h2qegA4A/E5Jr0cNSjGP1it8K2Xd9vTucFepKUvY0t3u+y/zO+/Zw+EI+H3hv8AtC/XzNavwJJ5G5IzzjPtn88mvauRTVURqAowBwAKX8cVx1asq03OT1Z1U6caUVCOyHUUUVkahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMGQMgV8v/ALTGn3ngD4ieGPiRp0TSC0lWK6VeNyZPB9MhnXP+0K+oDk9DWH4z8J2fjTw9d6VfRLLDOhUhhXThq3sKqk1dbNd09zmr0va03FOz6epY8Pa/Z+KNFstV02dbmxvIllikHcEfoexHY1q18g+BfGur/sxeLpfDPiRJrrwbdTlre6ALG1JP3gO4/vL/AMCHOQfrTT7+21axgvLOdLm1nQSRTRMGR1IyCCOoqsTh3RalF3i9n/XVE0K3tVyyVpLdFyiiiuQ6wooooAKKKKACiiigAooooAKKKKACiiigAooooAz9Z0Wz12wltL2BZ4ZAQVYZrw3xF8Cta8OO0vhK+WS06/2deAvGvsnIK/QHHtX0DnNBrehiKuGd6bsYVKUKqtNXPk25l8U6U7R3/hO8Zl6vZSrIp+m7b/nvUUWra7eYFr4S1VmPH74xIP0dq+tWiRx8yhvqKakEUf3Y1X6CvZWdYhK1l93/AATh/s+le93+B84aJ8LPG3iuRRqLw+H7BsFltiXmI9PMOMfgoPvXtHgj4eaT4D08W2nwAOeXlblnPck9SfeurxnrR2rysRjK2Jf7yWnbodtLD06PwoKWiiuQ6AooooAKKKKACiikoAafpXIfEv4m6N8LfDkmravNjOVt7VD+9uJMcKo/meg71jfF3436F8ItNJumN7rEy5ttMhb95J2DN/cTPc++Aa8T8CfDHxH8dfFw8Y+PMraLj7Np+CscaZyFCnoPbqTya9Chhlb21fSH4vyRw1a75vZ0tZfgvNkXgbwb4h/aJ8bx+MfF8fk6NCf9C0/B8tUzkAA9u5J5Y+2BX1nY2MOn20dvAgjiQYCgVHp2nW+k2cdtbRrFEgwFUVaH6VhiMRKvJaWS0SWyRtRpKlG27e77sfSUtFcx0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByHxE+HWlfETQ5rDUIEcsuEcjlT2Oa+Z7O/wDHP7K+rGLZLr3gx3LPbSE/ugTyyH+A/T5T3APNfYi9Oao6votlrtm9tewrPEwwQwrsw+JdJOE1zQe6f9aPzOSrQVVqSdpLZr+tUc78PPit4a+J+nfatCvhNIigzWknyzw/76f1GQexNdiTxXy/8Qv2X7rRdR/4SDwLfS6VqELeYi27FOfw6fhx6g1D4X/am8QeC7mPSviTokoAOwatZRgE+7J91vqpH+6a2eFhW97Cyv8A3Xv/AMExWIlS93EK3mtv+AfU3XrSiue8JeOdB8c2AvNB1W31G3wC3kv86ezqfmU+xANdDmvOlGUXaSszujJSV4u6FooopFhRRRQAUUUUAFFFFABRRRQAUUlLQAUU1mCjkgfWl4IoAWiiigAooooAKKKKACikpaAEIpKDXAfEr41+FvhZbk6xfh74ruj0+2w9xJ6fLn5R7sQKqEJ1JKMFdmc5xguabsjvWYICzEKoHJJ6V89/FP8Aahhsr5/D3gG3HiDXnzG14g328B6fL/z0I9fuj1PIrhdT8SfEf9pS5NjaWz+GfCch+aJCd8y/7bcFvpwvscV7l8LvgXoPw3sU8mBZrwgF53GWJ9zXpeypYTWt70v5VsvV/ojh56mI0p+7Hv1fojzf4Q/s7XN7qf8Awlfja4k1LWbh/OImO7Dfj/kdBivpC1tYrOBYYY1jjUYCqMCpQAAMUuMDrXBWrzry5pv/AIHkjsp0o0o2ih1FFFZGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAg965vxT4A0TxfaSQajZRShxgkqK6QHNGeaabjqhNJ7nyv4s/ZPu9Cvzq3gvVbnSryPLIbeRlI+hBBH4HHtVHTPj38TvhhKLPxhoX/CR2UZwbuIeXMB67lGD+Kgn1r616VQ1HRLDVoyl3bRzKf7y5r0I46UlyVoqS89/k9zheEinzUm4vy2+48x8E/tQeAfGmyI6p/Yl63H2fVQIefaTJQ+3zZ9q9XguI7mJZIZFmicZVkYFSPUEV5B41/Zg8KeKzJKluLS4bnegwc/UV5ZN+zj46+Hcz3Hg3xNfWiA7vJjmIRv94Dg/iDT9nhK3wTcX2eq+9f5C58TT+KKkvLR/cz64HNB6V8m2nx1+L3gRhD4h8PW3iGFPvTJGYpW/FOP/AByus0H9s7wtdSLBr2lan4euP4i0YnjX8Rhv/HKUsvrWvTtJeTT/AA3/AAGsZT2neL81b8dj6F/KnZ9K4bw98avAvihV/s7xTpkjt0ilnEMh/wCAPtb9K7WORJkVkYMjDIKnIIrhlTnTdppr1OuM4zV4u5LRRRUGgwnj0r5y/aI/bP8ADHwTluNE06MeJPF6DDWML7YLQnp58nODznYuW9duQa+je31r4i/a3/ZV8H+GvAvxI+JcTXtzrl3LFeJHPKDFbyyXMSyFFUDrub727GeDUyTcWotKXS6uexlEcHPGQjjoylB9ItJt3Vk29l+P5noH7IX7Vet/tBah4g07XtHsNPu9OSKaObTi4R1cuMFXLEEbOuec9Bivptm+bHavz0/4Jl/8jv42/wCvO1/9Clr7i+KPji1+Gfw98Q+KbsK0WlWUlwsbnAlkA/dx59Wcqo92rPDzlVpU5y3aT+9HdxHgKWAzjEYPCxahGTUVe78lfqfnP+2t47vfi1+0cfDOlXLyWujyRaLZokh2famP758DowdzGT6RV9H/ABq/azt/2bPD2i+DtOtz4m8ZQ2ERuGvp2MVqpT5WmYfM7tgHbkHByWGQD81fsS+Cbr4n/H1te1NmvBpu/UbqeQ5L3EpOCfXOZD9cVy3iFm+JH7YOoJqLm7ivPF0sOJBndBHOVjQg9hHGi49BWHtpulGafxysr7JPS9vRN/M+6qZTgXjvqFeN4YKg51EnZzno5LmWvxSS9Ee2/Dv/AIKV66/iGCLxroGlnRZXCyXejrLHJbqf49ju+8DjIBBxkjPAr720XWrPxFpFnqen3CXdldxLNDNGcq6MMgj8DXwV/wAFKPCem6Hc/Dq/sbOG2mmgvbSZ40ALohgaMH6F5P8Avqvf/wBhHXJ9a/Zx8PC4cubRprVCeyJKyqPwAA/CtKcp886c3e1mna2jvo/mj5bOcFgp5bhs1wNP2am5xlG7aTjazTeuqetz6IoopM10nxAgNB61zXin4i+GvBUROua7ZaawGfLmmHmMPZB8x/AV454l/bL8PwyNa+F9I1DxHd8hW8swRH0PILn6bRXVSwtatrCLt36ffscs8RSp6Skr9up9Djjk1wfj742+EfhrFJ/bGrRm8A+XT7XEtwx9Ng+79WIHvXgE198aPjQ5R7o+F9IkP+osAYjt92B3HjqCwHtXaeAv2R9F0SVLvWXbUbrO4+ad3P06f1rp+r0KOtad32jr+O33XMfbVqv8KFl3f+W5yWrfHT4kfF+drHwTpL+HdKkO37c43TuvqGIwv/ARkf3q6j4a/srW1hc/2v4puJNX1SRvMdrhixLdyc5yfc5Ne+aRoGn6FAsVlbJAoGPlHNaOTWc8Y+V06KUY+W79XuVDDR5ueo+aXnsvRFTTdJtNIt1gtIEhjUYAUYq5S0VwHcFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBVutOtb1Ss9vHKD13KDXIeIPg54W8RxlbnS4Tn/ZBH5Gu5opqTi7olpSVmfPOv8A7HnhjUdzWbNat22Er+g4/SuNf9lrxf4Udm8MeKdQ09c5At7hk/8AQStfW1H1Nd0MdiYq3Pdeev5nLLCUJu7jr5afkfJPkfH3wjgQ682pRL1S6hSUt+LIT/49U8X7QHxh0MhNT8J6dfRrwXSN0dvykx/47X1eVB64NQSWNtL9+CNvqoqvril8dOL+VvysR9Vt8E5L53/M+Z4P2wtZs2C6t8O7yMd5be4bH5GPHr/F/jXlv7TP7YvhL4g/B3xR4Ohsr+z1y8SBEil8tgjrcROQ2GyPlU9vTivtm48K6Rdk+dp1u+fVBXy/8Rv+CeXhvxz401XX7TxJqGkLqMxuHs0ijdI3P3tpIzgnnB9amdajOD9nSSl0u2l+p6+VQpUcZCpjK0lTjrpFNtprTVxSv3Pmv9iL43+E/gr4t8S3Hiu9ksYL62gSF0jLglWkzn0+8K9Q/bh/ae8O+Pvh3pfhPwnqE12NQuhdX7mFo18iLlEO4DO6Qq3H/PKt/wD4djaI3D+NdRKHhgLeMEjv2r5a+Jvhu18Z/tEXHgzw5Gws7a+j0C32qN+2E7JZD6/MJXGe2K8pQ9lgVRa/eWUU4tta6Xd0rWV+p+lwxGX5txRLNqUn7GHNVkppJ+7qopqTTvKyPoz9hj4jfD74W/De9u9a1k2mt6nctK8X2OaQhBwgDKhGMAHr1Jr5n1XxfYeFv2ldQ8TwO0+k2/ieXUUZEIY2zzmQYUgHIjcceor9J/D/AOyz4K0rRLG0bS4HaCJV3NEpOcfSuS+K37DHgb4j2kb2sk/h/VYhhL2zRCHH92RCMMB26EeuMg9OJp0J0oRw6alFpq7000s7K+qb7nzGS55KhmOKr5l71PERnGbiveXO78yu7OzS0uj5W/bf/aG8K/HCbwdD4XuJ7mDSorqW6nli2Lul8oKo56gRsT9RXo/7MX7Qd18NPg5pGg2Hgq+1e5BeV5jKY0Jdi2cBG459q6zwR/wTc8M6BrUN9r/iO78QW8LB1s/JWCNiP72CSR7ZA9c19T6Z8PvD2j28UNrpdvHHGoVRsHAFGHlCnVnUrQUuaySTdklfrZN3bZlnWOw9bAYbK8vnLkpOTcpJJylK3S7skl3PnO5/aB+LfiomLQ/CllpCN/y1lRpZF9PvED/x01Vb4ffGrx+AdZ8WXtpC/wB6K0byUI9CqbAfxBr6wh0+2tVxFBHHj+6oFWAK7/rrh/Cpxj8rv73c+J+qKX8Sbl87L8D5m8LfsbadBJ9o1y7kvpmO597k5Pc8dfxzXsvhv4P+GPC8SpZ6bENvqox+VdtSH8K5qmJrVvjk2bwoUqXwRSGQ28dugSJFjUdlGKloormOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBKwV8CeHU119ZXQ9PTV3OWvltkEzH3fGT0Fbx6UtF7bCCiiigYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z" alt="" width="309" height="192" />(完美解决)

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = ;
const int N = ;
const int M = ;
struct Edge{
int u,v,cap,cost,next;
}edge[M];
int head[N],tot,low[N],pre[N];
int total ;
bool vis[N];
int flag[N][N];
void addEdge(int u,int v,int cap,int cost,int &k){
edge[k].u=u,edge[k].v=v,edge[k].cap = cap,edge[k].cost = cost,edge[k].next = head[u],head[u] = k++;
edge[k].u=v,edge[k].v=u,edge[k].cap = ,edge[k].cost = -cost,edge[k].next = head[v],head[v] = k++;
}
void init(){
memset(head,-,sizeof(head));
tot = ;
}
bool spfa(int s,int t,int n){
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++){
low[i] = INF;
pre[i] = -;
}
queue<int> q;
low[s] = ;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int k=head[u];k!=-;k=edge[k].next){
int v = edge[k].v;
if(edge[k].cap>&&low[v]>low[u]+edge[k].cost){
low[v] = low[u] + edge[k].cost;
pre[v] = k; ///v为终点对应的边
if(!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
return true;
}
int MCMF(int s,int t,int n){
int mincost = ,minflow,flow=;
while(spfa(s,t,n))
{
minflow=INF+;
for(int i=pre[t];i!=-;i=pre[edge[i].u])
minflow=min(minflow,edge[i].cap);
flow+=minflow;
for(int i=pre[t];i!=-;i=pre[edge[i].u])
{
edge[i].cap-=minflow;
edge[i^].cap+=minflow;
}
mincost+=low[t]*minflow;
}
total=flow;
return mincost;
}
int n;
char mp[N][N];
int v[N];
int main(){
while(scanf("%d",&n)!=EOF,n){
init();
for(int i=;i<=n;i++){
scanf("%d",&v[i]);
}
for(int i=;i<=n;i++){
scanf("%s",mp[i]+);
for(int j=;j<=n;j++){
if(mp[i][j]=='') addEdge(i,j+n,,-(v[i]^v[j]),tot);
}
}
int src = ,des = *n+;
for(int i=;i<=n;i++){
addEdge(src,i,,,tot);
addEdge(i,des,,,tot); ///巧妙地一步
addEdge(i+n,des,,,tot);
}
int ans = MCMF(src,des,*n+);
printf("%d\n",-ans);
}
}

hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))的更多相关文章

  1. hdu 3488&lpar;KM算法&vert;&vert;最小费用最大流&rpar;

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  2. 图论算法-最小费用最大流模板【EK&semi;Dinic】

    图论算法-最小费用最大流模板[EK;Dinic] EK模板 const int inf=1000000000; int n,m,s,t; struct node{int v,w,c;}; vector ...

  3. hdu 1533 Going Home 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...

  4. HDU 5988&period;Coding Contest 最小费用最大流

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  5. hdu 3667(拆边&plus;最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...

  6. HDU&ndash&semi;5988-Coding Contest(最小费用最大流变形)

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  7. POJ 2195 &amp&semi; HDU 1533 Going Home&lpar;最小费用最大流&rpar;

    这就是一道最小费用最大流问题 最大流就体现到每一个'm'都能找到一个'H',但是要在这个基础上面加一个费用,按照题意费用就是(横坐标之差的绝对值加上纵坐标之差的绝对值) 然后最小费用最大流模板就是再用 ...

  8. hdu 1533 Going Home 最小费用最大流 入门题

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  9. hdu 1853 Cyclic Tour 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 There are N cities in our country, and M one-way ...

随机推荐

  1. C&num; 使用memcache(memcache安装)

    1.下载memcache. 2.安装memcache. 3.安装好后,打开任务管理器就能看到memcache服务了. 4 .memcache基本命令.

  2. struts2 &lt&semi;s&colon;property&sol;&gt&semi;标签的使用--输出时间格式转换

    转载地址http://hi.baidu.com/nonyi_com/blog/item/acf1b8d74b6cf63e07088bc4.html 最近在使用struts2的<s:propert ...

  3. iOS 属性之assign、copy、retain

    参考自:http://blog.csdn.net/getchance/article/details/42213219 参考自:http://zhidao.baidu.com/link?url=Xmn ...

  4. 牛顿迭代法求开根号。 a&Hat;1&sol;2&lowbar;&lowbar;&lowbar;&lowbar;&lowbar;&lowbar;&lowbar;Xn&plus;1&equals;1&sol;2&ast;&lpar;Xn&plus;a&sol;Xn&rpar;

    #include <stdio.h>#include <math.h>int main(void){ double a,x1=1.0,x2; printf("plea ...

  5. 乡下人设计模式——SOLID之六大原则

    S(Single Responsibility Principle):单一责任原则 O(Open Closed Principle):开放封闭原则 L(Liskov Substitution Prin ...

  6. 智能POS相关FAQ

    1.安卓智能POS(一体机)的口碑点餐已知问题: 1.由于口碑的组合套餐接口不稳定,强烈建议商户不要使用组合套餐商品.已开通口碑后付的门店,如果有组合套餐商品,暂时不要使用组合套餐商品:有组合套餐需求 ...

  7. SQL SERVER 如何判断是不是年,月最后一天

    , SYSDATETIME())) PRINT '不是'; ELSE PRINT '是'; GO , SYSDATETIME())) PRINT '不是'; ELSE PRINT '是'; GO 1. ...

  8. &lbrack;Spark&rsqb; Spark 安装配置

    原文地址:https://www.cnblogs.com/memento/p/9148732.html Windows 上的单机版安装 下载地址:http://spark.apache.org/dow ...

  9. RedisDump安装报错

    环境:win10 首先安装 Ruby 安装好后,使用命令行 gem install redis-dump 在安装过程中始终报错,意思是无法使用make命令 然后安装make 参考教程: http:// ...

  10. 2017第八届蓝桥杯C&sol;C&plus;&plus; B组省赛-日期问题

    标题:日期问题 小明正在整理一批历史文献.这些历史文献中出现了很多日期.小明知道这些日期都在1960年1月1日至2059年12月31日.令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的 ...