上一篇博文提到,程序如何获取键盘输入,也就是D键按下,程序获取到前进指令,那么获取到前进指令之后,马里奥是如何前进的呢,这篇文章我们重点讨论这个问题。
马里奥的移动,依旧是在帧刷新函数中,这个调用过程上个博文说过,这里不再重复,简单来说就是CMGameScene::OnCallPerFrame调用CMGameMap::OnCallPerFrame,再调用CMGameMap::MarioMove函数,在MarioMove函数中,实现马里奥的移动。
void CMGameMap::MarioMove(float fT)
{
do
{
CMMario* pMario = dynamic_cast<CMMario*>(getChildByTag(enTagMario));
CC_BREAK_IF(pMario==NULL);
CCPoint CurMarioPos = pMario->getPosition(); //如果左键按下
if(m_bIsLeftKeyDown)
{
pMario->OnCtrlMove(fT,false);
}
//如果右键按下
if (m_bIsRightKeyDown)
{
CCPoint CurMarioPos = pMario->getPosition();
pMario->OnCtrlMove(fT,true);
//如果Mario的位置变化了,则地图才会卷动
if (convertToWorldSpace(pMario->getPosition()).x>120 && abs(pMario->getPositionX()-CurMarioPos.x)>1 &&
pMario->getPositionX() < (getContentSize().width - SCREEN_WIDTH + 100))
{
setPositionX(getPositionX()-100*fT);
}
}
//如果跳跃键按下
if (m_bIsJumpKeyDown)
{
pMario->OnCtrlJump();
}
//如果没有键按下
if (m_bIsLeftKeyDown==false && m_bIsRightKeyDown==false && m_bIsJumpKeyDown==false)
{
pMario->OnCtrlNoAction();
}
在MarioMove函数中,根据按键的情况,分别调用Mario对象的OnCtrlMove,OnCtrlJump,OnCtrlNoAction三个函数
我们依次来学习这么三个函数,这个文章里首先学习平移函数OnCtrlMove函数
void CMMario::OnCtrlMove(float fT,bool bToRight)
{
if(m_pGameMap==NULL)
{
CCAssert(false,"Error:No Map!");
return;
}
//判断是否可以移动
bool bCanMove = true;
CCSprite* pTileSpriteTop = NULL;
CCSprite* pTileSpriteMid = NULL;
CCSprite* pTileSpriteBottom = NULL; CCPoint ptPosTop = bToRight?ccp(getPositionX()+boundingBox().size.width,getPositionY()+boundingBox().size.height):
ccp(getPositionX(),getPositionY()+boundingBox().size.height);
CCPoint ptPosMid = bToRight?ccp(getPositionX()+boundingBox().size.width,getPositionY()+boundingBox().size.height/2):
ccp(getPositionX(),getPositionY()+boundingBox().size.height/2);
CCPoint ptPosBottom = bToRight?ccp(getPositionX()+boundingBox().size.width,getPositionY()+5):
ccp(getPositionX(),getPositionY()+5); //检查马里奥前进方向是否有障碍(检查 上 中 下 三个方向)
pTileSpriteTop = m_pGameMap->TileMapLayerPosToTileSprite(ptPosTop);
pTileSpriteMid = m_pGameMap->TileMapLayerPosToTileSprite(ptPosMid);
pTileSpriteBottom = m_pGameMap->TileMapLayerPosToTileSprite(ptPosBottom); if (pTileSpriteTop!=NULL || pTileSpriteMid!=NULL || pTileSpriteBottom!=NULL)
{
bCanMove = false;//若在前进方向找到了砖块 则 禁止移动
}
//判断马里奥是否移动出屏幕边界
if(bToRight==false)//判断是否左出界
{
CCPoint ptMarioInWorld = m_pGameMap->convertToWorldSpace(getPosition());
if(ptMarioInWorld.x<=0)
{
bCanMove = false;
}
}
else//判断是否右出界(假定,实际不应该出现这种情况)
{
CCPoint ptMarioInWorld = m_pGameMap->convertToWorldSpace(getPosition());
if(ptMarioInWorld.x>=SCREEN_WIDTH-boundingBox().size.width)
{
bCanMove = false;
}
} //根据马里奥当前状态 来处理
switch(m_eCurMarioStatus)
{
case enMarioStatusStandLeft: //如果是待机状态
case enMarioStatusStandRight:
{
//根据状态播放动画
switch(m_eCurMarioLevel)
{
case enMarioLevelSmall:
{
m_pCcbReader->getAnimationManager()->runAnimationsForSequenceNamed(_CCB_MARIO_SMALL_RUN_);
}break;
case enMarioLevelBig:
{
m_pCcbReader->getAnimationManager()->runAnimationsForSequenceNamed(_CCB_MARIO_BIG_RUN_);
}break;
case enMarioLevelMax:
{
m_pCcbReader->getAnimationManager()->runAnimationsForSequenceNamed(_CCB_MARIO_MAX_RUN_);
}break;
} //变更位移
if(bCanMove==true)
{
float fCurPosX = getPositionX();
if(bToRight)
{
fCurPosX += _MARIO_BASIC_SPEED_PER_SEC_*fT; //向右移动
m_bFaceToRight = true;
}
else
{
fCurPosX -= _MARIO_BASIC_SPEED_PER_SEC_*fT; //向左移动
m_bFaceToRight = false;
}
setPositionX(fCurPosX);
} //改变马里奥状态
m_eCurMarioStatus = bToRight?enMarioStatusRunRight:enMarioStatusRunLeft; //设置马里奥面对方向
MarioTurn(bToRight); }break;
case enMarioStatusRunLeft: //若马里奥正在向左移动
case enMarioStatusRunRight: //这里设计成允许直接变向,如果要增加额外动作效果,可在这里区分
{
//变更位移
if(bCanMove==true)
{
float fCurPosX = getPositionX();
if(bToRight)
{
fCurPosX += _MARIO_BASIC_SPEED_PER_SEC_*fT; //向右移动
}
else
{
fCurPosX -= _MARIO_BASIC_SPEED_PER_SEC_*fT; //向左移动
}
setPositionX(fCurPosX);
}
//改变马里奥状态
m_eCurMarioStatus = bToRight?enMarioStatusRunRight:enMarioStatusRunLeft; //设置马里奥面对方向
MarioTurn(bToRight);
}break;
case enMarioStatusOnAirLeft: //同方向跳跃正常位移 反方向跳跃 不改变面对方向 且位移量减半
case enMarioStatusOnAirRight: //
{
if(bCanMove==true)
{
//变更位移
float fCurPosX = getPositionX(); //计算位移量
float fMoveDis = 0.f;
if((m_eCurMarioStatus==enMarioStatusOnAirLeft&&bToRight==true)||(m_eCurMarioStatus==enMarioStatusOnAirRight&&bToRight==false))
{
fMoveDis = _MARIO_BASIC_SPEED_PER_SEC_*fT*0.5f; //若反向 则 位移量减半
}
else
{
fMoveDis = _MARIO_BASIC_SPEED_PER_SEC_*fT; //若同向 则 正常位移
} if(bToRight)
{
fCurPosX += fMoveDis; //向右移动
}
else
{
fCurPosX -= fMoveDis; //向左移动
}
setPositionX(fCurPosX);
}
}break;
}
}
这个函数代码比较多,我们一段段来分析,首先第一段代码
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA38AAAFhCAIAAABPloQaAAAgAElEQVR4nO29XbaksK5mG/2pTp4u3Eac52oi9yH3pli2JEvyDwbmHDlyEApbkoWxvyQyiN+xJf/7v/97dwoAAAAAMJ7f3QnIoD4BAAAAXgnqM8bvf4SKOY2///kVxn+W65/OTHLNtPxPuz+x0BAAAADgg2yqFW5Rn4aIrHXYtbF4fD3QlGUtRusG9h9PGzv5On9bJTeN9TABAAAATsJa4f/8f//33x/beFrqxh7Wq8+mOrzK0ELGic2u6tAI6r/3Gb05WoduKuZESzsiAAAAQEFMKxT60mlMsKH6FC2a+hQPmv6bLa/Stm5g3Oy0XxrDFDW3lmH6fxEAAADAd0B9HodPemqfeh+V+vR8CG74NDIxbkPaCtgYpp1/qBpGaAAAAIB/5CVCU32mP3Y/tlSfojF07zMhyJoS0D5OqE+jY7OZERoAAADgH0mJYChOo4GflerTLz1ru6Y+6/ujxUHnLVJbCHrUp+e+pjgio6MRGgAAAOAfGYlQq8lTd4pC8wXqU9N/2ifvx1/RZgRqviW+K1qMz8GLl00Fqelm0egRvgAAAAD/CEsEW0o+7t5n6MZn/VbnJ+/a3dBmPj33PsU7tZpF09n+OgAAAABcyX/rqDZqivM16tNjD30Y7bxT6FGfno7G5+b15+y2N+NOcChDAAAA+Bph9Vl/nUj7dtH+3zoaIj0PXZbVb9W9DLUn+tTuj/bkLI6iTsATyzMcAAAA+DKbqoTd1Kct45yC1bjvaIvL3L1PLbGQlHQqXe56AgAAgJNNhcK2v/MOAAAAAD2gPgEAAABgHahPAAAAAFgH6hMAAAAA1oH6BAAAAIB1oD4BAAAAYB2Z3zqqn+I5/JGfi5649Dt+ffL7n4emk9/v91Ma/S4EQ/+/XjkPAAAAAOvJ/9aR/yeOtlWfx9GrPv1ORGl4NSa0Y6E+o90nsU0iAAAAsCOz1GfuJ45OvqA++/Ui6hMAAAAeR14peNTn5r+0eVw+Oi80k994uNVn8fm4oRfrlqLKtO1Fd/Ezes9H9r8KvaVcz/NlfVAcH1aRUbUAAABvILmja4pTO476v+Xe51UPOY3iSyVQ+SG78T9B62NRtl79iKI2YexH9CRK+frYKDIAAAC8g8wOr3276HD8Z1AnX1afZxvtRulA9em5oxlFU5+GpbgP6vwuFwAAADyRzHfePe+iPqtAAfWp3eYUjR71KQZ1Kk7/J+//be8yNosMAAAAryT/raPa2Pzyu58vqM9RxiHqc597n7YfAAAAeDph9Xn9Uxi1xom0nvKtI/8nxdq9Q9so3nQsLOffdYM6By0rK/U4RpXqZsVbWjGHJwkAAAC3sOmOzm8dQQHqEwAA4B1suqOjPgEAAABeCeoTAAAAANaB+gQAAACAdaA+AQAAAGAdqE8AAAAAWAfqEwAAAADWkfmto/opnrVRfDKon5XqU3wSp98YjdWbbjau8cBRsWXUbTqxdMf+6J2h6zQMo9gdAADgg+R/68j+iSPxXT8Lnzbf9WtDYxOYx6mKnBGjbdYXJDqisVzlo3/a1O8CAAB8kFnq07B4WKM+Q8pgkmIIue3Mwd99lEJNsLIgaVCfAAAAafK74NfUZ/2W9ulq8Qls0bjZXWtc/K1lqPk08m+OVGt8Y0GcedoFMZJvNj6q01GfLzFDzdh8CwAA4B0ktzrtJmj9/0Fz/vdUn8df/XQogqNuZji3LaI4M9IzuouxnEbb510FceZpdE8zT30CAAC8nswuKN7g/Gd8vfos2niEl+3cuHtXC7sb1ad9U/CWgoh5+lPqAfUJAACQJrwL2oIS9Wk7id7qK4yF3GmGmHHv0w66rCDNPKPq81ehtSycoz4BAABCxHZBUU0aX2/fXH0eEb0SUjajxFZUBSa6R9XnzgVZfO/zCKrPqSkBAAA8hbD6rJ/iaTzUc3/1eSifaNdG8a5YzijGaqYUHU5oRIWcMhrvU5DEMI26+akrZrxVD1M0Xj0MSRIAAGBbNt3qnvJbRxtqhXtToiCdPCtbAACABJtudY9Qn2PvqA3h3pQoCAAAADTZdFd+hPoEAAAAgCioTwAAAABYB+oTAAAAANaB+gQAAACAdaA+AQAAAGAdmd86En/P3Wl0csvzPpsPiex/cuTt30ZvPmAyNMC7CiI+PrPpc9SX38XoTaPYHQAA4IPkf+tI/Ikj2+jnKb91NDaBeZyqyBkx2mZ9QQqpN9a5P/oRmTbD0wAAAHgin1afIWUwSTGE3HbmMFal3VsQ1CcAAMBDye+CTaH573jnT96jykD7CLX+5LcWRloz54ezzpuXhk8j/+ZItcb3FsTjs/ZcD1aMbrQ8lNNRn6+6RIax+RYAAMA7SG512v3Owr75//uMKoOjutNmHPtVnWERxZmRntFdjOU02j5vKYio/6LJp5mnPgEAAF5PZhesBeWpMl/8ybvYxiO8bOf2jbp91Kd9U3B9QVCfAAAADyW8C9pSEvVpO4ne6iuMotgyus+492kH3aEgOfX5q9BaHn/Hi/oEAAAIEdsFRR3p/A+gIZ7ynffZYiuqAhPdo+pzk4LscO/zCKrPZpUAAAC+QFh9Xv8URq1xIq1bnvdpG8W7YjmjGKuZUnQ4oREVcspovENBzuPz7+tBKFaCOhk7zyK0aLx66EwPAABgczbd6p7yW0cbaoV7U9qwIM+CAgIAwOvZdKt7hPocdS9tIPemtGFBAAAAYDc2FQqPUJ8AAAAAEAX1CQAAAADrQH0CAAAAwDpQnwAAAACwDtQnAAAAAKwjrD7Fp3j6jU5ued6n9oRI2xiN1ZtuNq7zAZOhAd5VEGM4+9N89qdoFLsDAAA8kfxvHdk/cfSR3zoam8A8TlnjjBhts74goehigxsF3FU++mdd/S4AAMAT+bT6DG3tk7b8kNvOHPzdRynUBKhPzVi/CwAA8ETy29jX1Gf9lvbxaPERatG42V1rXPytZaj5NPJvjlRrfG9BPC1Fn/5Adj2NsTcbH9XZ/FWn+1DOteHcjgsAALADyb1KU5y1+sz918891efxVz8dimKomxnObYuot4z0jO5iLKfR9nlLQfxG0Wc0UKEUO5mnPgEAAPYns43VavKUmIUqrY1OtlWfRZuQ3BHtokW8hXav+rTv6q0vCOoTAADgoYS3MVtKiu+iPg27x3JENNAk9WlEPO4rSE/0serzV6G1LJyjPgEA4GvEtjFbXDb/A6ifp3znfbbYiqrARPeo+tykILupzxA59dkcJgAAwCMIq8/rn8IotsyldcvzPm2jeFsrZxRjNVOKDic0okIPGY13KEizb106p1EMdFzUZ+0kSh3COcxrDsbwO9MDAACYzaZ71VN+62jDzf7elDYsyKeg/gAAsD+b7lWPUJ/abbYbuTelDQsCAAAAu7GpUHiE+gQAAACAKKhPAAAAAFgH6hMAAAAA1oH6BAAAAIB1oD4BAAAAYB1h9el/umfPIz9RnwAAAACvJP9bR/6fONr2lzYBAAAAYDH5T95RnwAAAAAQJaM+i8/TUZ8AAAAA4IR7nwAAAACwDtQnAAAAAKwD9QkAAAAA6+A77wAAAACwDp73CQAAAADr4LeOAAAAAGAdqE8AAAAAWAfqEwAAAADWgfoEAAAAgHWgPgEAAABgHahPAAAAAFgH6hNgO36/TS/MuzgLQmUMqBLYMEM8UCWNsQWZ+LzPI/Wc+X+sVJ+/C5rx9xen21kZm0GjeQ73kEaL6EzJbtYcS3S880o0yueoU+nv2zPlDr2khcUTZfbsrf3ffrkNyWesh85Anut9WlJloKdcR8alxHXkdNWfz1gPV1dRb832UZ8jhxNqHfpZo/Sj5o+F6vNayvPYbxybwJDunXmei1d/bgnEiP6UhozdY580GTodLstz3pCNCdCMPnzbsBnlf9Q5Wjz8NdjFmTTGF1xHonOuo6ifTlczmJGPf+Mbm0DekedHNTdXn6Hi7rkATVoo77rkjLjOf6mH2jtDrFSfA9fNY9dJazh0KowekTqKrXbN2fvEXaA+cz65jgYms9V1dLv6HJhDxktxU/Pj6vP3X5qW68G1WdFYDF231Lr78yyc2EVwRm8m729cv2WnpHU3HNaDOuLnyJ/A1X9imMagNJ/GcR1dLIgxlqZDLc/jb5GLt5oFcRq1Imspien1VCna3Zmn1thZJbFZc0RH/NTXfc+U7LHUKRmhD33mNIdZJ2AHEo/tQmnNosUUHYpj/13qXNsTRjFPIyUxvZ4qRbs789QaO6skNmuO6IifejGZ5jANh2Keh3QGDQ+iTztzYSzRDicfvPcpnmCtozg5mr08qdrd/XmGkg91TzMkJc9p1UYRHV2uyIlheibAmskgWpodi3VNbOC/HuuO9XLZeTrEPDuvd//ZtI3OM+K5KidNRS2QeIV6po3oX5tLWnSn80dfR5pbrqPXXEed9RS7eFwZ9uLScBLucPJB9WkbRy2pzejNhTLU3VOE6DqbprOe/mUltAQkNgm/Mb1YXHcILdaMyaC5NZI3BpKI7jQmdqOcMRG9OdPmVUls1lNkcSpqHa9/Gz6bx553xZavv4482YaMXEcbXkfFsdFde+m5ypzzM03eC+rz6L6KjHDOQJ0LpdMSXUGKvp2XViIl5xg7z9GQRb/ppLmg2H1D0dMW0e6fNqET5zQmoueM/uiHe9b5u4vRDaNGrvL+EP9aXv/2+PTP1WYmX7iOnNmGjFxHG15HxbHRPbqheK6pUEEMYl5C33mvX/rZ/Dvvdvfmy9CiGe3uz7Mz+cQomsxLKbpAjzpHidI1Q987GTS3dkdnQXpW6v13zc7T0VklccfNnfdmnkaGzemUm9529I9cR2m3Q6JzHfk9OPP0z3ln9M4LwTBq08kg3MH/vE/tIaAebnnep2EU22hv/f6ieSvaO5O0L4Z0ntGC2Cml6UlJK3J9OsRAWnfx5WnU8reNduk8LbXuxogSKYmlqwMZLT1Fvhq1QRkvNUKl+ynUg9VyFi1Fd82zJ8/+Kmm96uhGEYzGdqAzpWagpt2oT2iYYvLNQHb30HDqbJsFscfezNZ4qREq3U/ByPM0Gpaiu+bZk2ftP1olrVcd3SiC0dgIpBXE6G5Eb/rUcjgqxJo0GaYbxsJvHRUkTu1sNkzJT3GB3RjdbnBvnvsgFuRxzD6b76hSP6I4MN79Du+YIVxHaTpLN7YgmxYX9Xml/mfN7WyYUpS7hhCN+4JSwwlncypGban8m+BsptmndPdnIIL6BAAAAHglqE8AAAAAWAfqEwAAAADWgfoEAAAAgHWgPrdmh/8avBUv/jbibCidB6qkQUEAYCDhBeV9z/vcllHL/e8vC/LJRTnT01ItLAu2w2eVzqheonSzvxfZTDLkZ8gXOYdPsIEFTIyu2T7qEwEKAKOIrSb+3zoyfgDJA+rz6Fjrbd02dkcc5apwKHpeoD5fUDrRubN0i/X9wH9fDfG5/p83IdZMeMO+W0EA4LnkVxPU51TG3ml7nIRq6qfZCYiWnUt3+uwp3ZfV5/5663b1OSkHAPggmaWk+Dy9KTQ/qD7FjwILo/2JoWgxfNZttC3Z6K4FssfSdKjleT0oWh4VfqPY7COlE2uSrqeYp5GSmF5PlaLdnXlqjZ1VEps1R3TET72YTHOYhkMxz0M6g4YHLTEAAD+z7n0aFg+PVp/FNhA12i+1LoarQ5dfPSmJlmbHYpMTG/h3OM+2953SaW6bxp+EEd1vrBuE5rzRPXc6tLqJFs1otBl4FYuBOuspdvG4cmYIAOBkrvrMSc/jRerTb0zvHLY2SkQvvEXdGskbA0lENxIQ27y+dJ5sQ8Z+9dmTvF8+3jvBOn1qU9HueB2m1l172SydlrlhBwAIMVF9pqXngfpU9IpHamh9Q9HTFtGekCaJIRh8oXTObEPGDdXn0Tqbt6hPrXG0yH7/xpVi5+MvstMnAECC2FKS+857gteoz/RO3HzXaNAjoaKCuHZrd0yrT2c+nfLxuaVLux0SfZn67DwdsyeY/7w383QGytWzmXy/FgcAMAivJs5He56W3CM/H60+j/9uHvXqXxh/F0QnzZZa96vRDuFJ6fcXLZDRsrBoL0+jNijjpdHr9aXzZGu81AiV7qdg5HkaDUvRXfPsybP2H62S1quObhTBaGwE0gpidDeiN31qORwSmh0AQGPTVePp6tNJc9W+bgz+Xi9GLIjYQLRQuuPhRZh9Nt9RJZHO0hld3lcrAJjNpqvGF9RnfcdibPuvYRSH0r0JzmYaSgcAm7DpMvQF9QkAAADwQVCfAAAAALAO1CcAAAAArAP1CQAAAADrQH0CbAffCyl48VfRB0KVwIYZ4oEqebCL4yndrOd9akYnK9Vn/Ri82vj38XneZyXOytgMGs1T7H5IX4+1v1Gezrnpxzkou1kzw+go5n19eJTPzsmQyCcXxZhyoltPlEmnxvDfM/Yhc2lIPmM9dAbyXO/TkioDPeU6Mi4lriOnq/58xnq4uop6a7bPVayuUuJUxqLmfuto56fNXwt0HvuNYxMY0r0zz2L9SqeRQ/Rz5tMM1D92p33SZOh0uCzPeUM2JkAz+vBtw2bGnB8obpZpx6nYxZk0xhdcR6JzrqOon05XM5iRj3/jE9/yHMtOvAlW+IXmturTs9WJ9n0WoC+oT3+IF6jPgevmseukNRw6FUaPSB3FVrtmaCl7EKjPnE+uo4HJbHUd7aA+jRkSmjyZkdQ/qike1y39PEh9/v5L03I9uDZr6jyxpdbdn2fhxJOqkZgzef9I67e0xnZ3f/LGwI3M/Qlc/SeGaQxK82kc19HFghhjaTrU8jz+Frl4q1kQp1ErspaSmF5PlaLdnXlqjZ1VEps1R3TET33d90zJHkudkhH60GdOc5h1AnYg8dgulNYsWkzRoTj236XOtT1hFPM0UhLT66lStLszT62xs0pis+aIjvipF5NpDtNwKOZ5SGfQ8GCnZ7T8E8UaqMkH732KJ1jrKE6OZi9PqnZ3f56G8fq3MaLoKJqE6lkfi2nb3evLtZmJJ2FPkZvj8nSZOhkMt4eE8xw1i9+MVXcsMKL7jXWDzuvdfzZto/OMeK7KSVNRC9SzsGjT2x/d6fzR15HmluvoNddRZz3FLh5XzfQ89fwTS3PU5IPq0zaOWlKb0ZsLZai7mGe97tgvnaNo0llP/7ISWgISm4TfmF4srjuEFqtzMoTcGskbA0lEdxoTu1HOmIjenGnzqiQ26ymyOBW1jj0Liz0PPdHrLu+7jjzZhoxcRxteR8Wx0V176bnKQtVIlM5VVhHU52GeqvSS2ow+cKHU3u3ZJGrnnZeWP7p4aRmWznM0ZNFvOmkuKHbfUPS0RbT794PQiXMaE9FzRn/0wz3r/N3F6IZRI1d5f4j+hcWzcNkJvP46cmYbMnIdbXgdFcdG9+iGEp3VOft/3jXeq+E7757uzZehRTPa3Z+nYezZJHrorGeuezN6zzmK5ukJvWwyhNzaHZ0F6Vmp9981h1ybHj9iG3HHzZ33Zp5Ghs3plJvedvSPXEdpt0Oicx35PTjz9M95Z/TZF4Kn8f9LW+xm8OLnfRpGsY321u8vmreivTNJ+2JI51m4uqYtjkgbaSeaN4/RGIs2Uk938eVp1PK3jXbRPC217saIEimJpasDGS09Rb4atUEZLzVCpfsp1IPVchYtRXfNsyfP/ippveroRhGMxnagM6VmoKbdqE9omGLyzUB299Bw6mybBbHH3szWeKkRKt1PwcjzNBqWorvm2ZNn7T9aJa1XHd0ogtHYCKQVxOhuRG/6rEMcEsaItMb/ORbd3Q6/dVSgnXjI0bxIlkW3G9yb5z40V8BHMPtsvqNK/dTD5zr6xztmCNdRmp7Shdp7Gm9aXNTnlfpfFdDPXVWNxuXsvwnO5lSM2lL5N8HZTLNP6e7PQAT1CQAAAPBKUJ8AAAAAsA7UJwAAAACsA/UJAAAAAOtAfW7NDv81eCte/G3E2VA6D1TJg10cSgcATcLLRPTRnvs/73NbRi3i2uO45uWTi3Kmp6VaWBZscs8qnVG9ROlmfy+ymWTIz5Avcg6fYAMLmBhds32uYnWVRp1KAPgOsTUi+rNGj3ja/LakV3Bbt43dEUe5KhyKnhfscC8onejcWbrFGmLgv6+G+NxcQq2Z8M1YWrUnXSkA8Erya0RTff47Rn3mGHun7XESqqmfZicgWnYu3emzp3RfVp9rJlgPO6hPY4Zsrt0BYCsyC0RxR9O+IfpN9Sl+FFgY7U8MRYvhs27jvEVRR6892GNpOtTyvB4ULY8Kv1Fs9pHSiTVJ11PM00hJTK+nStHuzjy1xs4qic2aIzrip15MpjlMw6GY5yGdQcODnZ7d0llPAHg9s+59fll9FttA1Gi/1LoYrg5dfvWkJFqaHYtNTmzg37c8m9l3Sqe5bRp/EkZ0v7FuEJrzRvfc6dDqJlo0o9Fm4FUsBuqsp9jF46qZnn+GAwAck9Sn8T9BnbxGffqN6Z3D1kaJ6IW3qFsjeWMgiehGAmKb15fOk23ImFB1OWMiek59HhMmWKdPbSraHa/D1LprL5ulc2aeawwAcExSn8flW/CoT6exKSOau4vdNxQ9bRHtCWmSGILBF0rnzDZk3FB9Hq2zeYv61BpHi+z3b1wpdj7+Ije95ewAAEdUfUa/8y5aPLxGfaZ34ua7RoMeCRUVxLVbu2NafTrz6ZSPzy1d2u2Q6MvUZ+fpmD3B/Oe9maczUK6ezeRzSrppBwD4R3iNCD3vM33789Hq8/jv5lGv/oXxd0F00mypdb8a7RCelH5/0QIZLQuL9vI0aoMyXhq9Xl86T7bGS41Q6X4KRp6n0bAU3TXPnjxr/9Eqab3q6EYRjMZGIK0gRncjetNnHeKQMEaktRftAPA1Nl0Lnq4+nTTXYnH1//IK7tkODQulOx5ehNln8x1VEukpXai90fh9VQWAHJuuBV9Qn/UNg7Htv4ZRHEr3JjibaSgdAGzCpsvQF9QnAAAAwAdBfQIAAADAOlCfAAAAALAO1CcAAAAArAP1CfA2+FpJwYu/yT4QqgQ2o2YIEwyOec/7vP7W0ebP+9SeV3c1ao+1s93OytgMGs1zYPd70XJ2Dspu1qxGtGLzijzK56jJ4O+bi1JfpLZbT5TZ87/23zP2IXNpSD5jPXQG8lzv05IqAz3lOjIupdwM0Ya/bHrAtsRmgP+3jnI/cXSyTH2K14PfODaBId078wx1FxvcuKwY+Vz/9nTvLJ1tn7oKpx0uy3PekD0T0nmaZk/jUf5HnaPFw1+DXZxJY3zBdSQ6H3sdvWOCQQ/5GfAC9RkST3uuIKhPZ2hPVi9Qn2Nvruw55w2HToXRI1JHsZX63O1CHgXqM+dzzXX0ggkGPWROf/0he33c87H78Sj1KX6mIFquB9dmRWMxdN1S6+7Ps3CiWcTuoZSc3T1j9zeu39Ia290Nh/Wgjvgp9idw9Z8YpjEozadxXEcXC2KMpelQy/P4W+TirWZBnEatyFpKYno9VYp2d+apNXZWSWzWHNERP/V13zMleyx1SkboQ585zWHWCdiBxGO7UFqzaDFFh+LYf5c61/aEUcxT6+48F/AO8mfaf+9z2//36b+iDn310TqKF2GzlydVu7s/z06jlry9yhQ+tcUuR+h02CkZnusu53H0FA88R6E8m8fXEaXnkuH2kHCeo2bxm7HqjgVGdL+xbtC5XPjPpm10nhHPVTlpKmqBxCvUM21E/9pc0qI7nT/6OtLcjr2OjBF5Zh28g/yZ9gvN16hP2zhqTWxGb650oe7OpcqfvJ1S4VPcTtJ0ng7/9ty5G3kydBpzW35zO0xE13aO4btmZ3Sn0R+905iI3pxp86okNuspsjgVtY7icpFeaT0XafHu668jT7YJoz8QfIdZ6vOV9z5t46g1sRl94ErndB5K3unf2E6KvtEtSkwjvbsbls5TPGTRbzqx82z2DUVPW0S7fyqGTpzTmIieM/qjH+5Z169sNKNGrvL+EMZykb4MQ+vwF64jZ7YhYzQQfIfY6c99531b9Xlkdw67e/NlaNWLdvfn2b9rOpckw6e4naTpPB257s3oPac4mqcn9LK5FHJrd3QWpEfx9EfPGXPRe/LMVamWX1ogw4MzTyPD5nTKTW87+keuo7TbaHStu3bq4ZWEz7TzeZ+a0cktz/s0jGIb7a3fXzRvRXtnkvaukM5Ty9zobiTvrOdx2VGaFfAQSl4be52hXSi7u1aQc+zRPI1h1m5DBTmGzqXDMZ2aLT1Fvhq1QRkvNUKl+ynUg9VyFi1Fd82zJ8/+Kmm96uhGEYzGdqAzpWagpt2oT2iYYvLNQHb30HDqbJsFscfezNZ4aaBlrrV0uoWns+mZ5reOCrgmt6JY2W+Mbje4N899EAvyOGafzXdUqR9RTRrvfodRM+TLNYSTTScB6vOK8e9RuIu7Tko0LpPnTXA2p2LUlsoDjGXTawn1CQAAAPBKUJ8AAAAAsA7UJwAAAACsA/UJAAAAAOtAfW4N/8m9gK/lpuH7qgAAsAnhjST0aM/0Iz9Rn8e4bV57CNy8fHJRzvS0VNMPnEvzrNIZ1cuVThs+AhQAAHqI7SKhnzUSGzhBfR4de7yt2wZKh+EqxL4/t0B9vqB0onNn6XLNAAAAQuR3Ef8vbSZAfY690/Y4CdXUT7MTEC07l+702VM6v75HgAIAQJrMFlJ8mG6oz0f80uYMtM8rxU9IPZ8yN33WbTTZZHTXAtljaTrU8rweFC2PCr9RbPaR0ok1SddTzDPqEwAAoGDivc/PfvIu6hW/0X7pFEZ1Sk5d5U9JtDQ71iqqbpBWS3Yyry+d5rZp/ElERwQAAOBkxSfvX1affmNOfTa1USK6X/91SqjO6EYCYpvXl86TbcLoDwQAAOAB9TmeGerz0D9p9cSKRk9bRLtfQmm39LRYTg30hdI5sw0ZufcJAAAziG0hfqGJ+iyOozKi+a7RoEdCRQVx7dbumFafznz6b16mu99burTbaHSjOwAAgIfwLmUC9zMAABgSSURBVOJ/3mf6YZ/Hw9Xncflg1zb+LohOmi217lejHcKT0u8vWiCjZWHRXp5GbVDGS6PX60vnydZ4aaBlrjV2ugUAgC+z6W7xdPXppLlbX4WFv9eLEQsiNhAtlO7oLoLR/cvlBQAAP5vuFl9Qn8adqiHtv4ZRHEoHAACwD5vux19QnwAAAAAfBPUJAAAAAOtAfQIAAADAOlCfAAAAALAO1CcAAAAArGPW8z5PS+6Rn6hPAAAAgFcy/beOvvm0eQAAAAAQyX/y7vxRTdQnAAAAAJxk1Gf9Ibt4rFk8oD4BAAAAXsnce5856XmgPgEAAABeCuoTAAAAANaB+gQAAACAdcz6zrv40g/qEwAAAOCVzHre52nPpYX6BAAAAHgl/NYRAAAAAKwD9QkAAAAA60B9AgAAAMA6UJ8AAAAAsA7UJwAAAACsA/UZ4Pc/P+Olp8vVLv7JZRLKqjkKrUFPUH9uuYIYzoc4KdqEMhw4beZ17Ow7z1XU59hmAAAwg02X4FvUp7ghXY0e3db8k0jA4yoUrikoxVEnkg81qNskKuz3WfTSXNVGY0qI9tnTxnbuJyrTR+XszGFgETpnMgAAdDLxeZ/aQ0A9rFefIeFyHje3MXsb9twVcwrBZrOQXBjoLSRQQgrGkJue3Opx+ctrZzh72th9o+2HyMfZcY26zZiKueIDAICTWb91ZPwAkofd1KcmXLSOx9/90m7TzMGp265/e1ROk6g40Jz43/KLAHG8iehXD8ZIPce1cdK0MUioQK3vVPUZwlM3TwP/W6hPAICp5BfZN6lPp6LSNIFx76Q+MEI02xjenHd0RD1UhNCE1yiJabzlUbpaSs6aFO9q3cWaiFLVMygjPXtcCTXpKaCYbaf69IRLEK3JwKnoTREAAIJkVtji83T7+BGfvDuloXhPy1Z4TTkYys1Wn81mdRtDGHmCXts0x1g3SGzwUclYdy+OtXMarYCR0vBp448eat+pPs+DtG4zSnc4Tu71rf6piPoEAJjHrHufx3P+36dHeh7BuzvOzcypUD1ypFCToqysPdjq06+EPCLGPgjJL0+DZrMiDVup2G61Uhxzpk3IQ7O9s+b+uP7BhoImapiYitFwAACQYJb6fNAn7x71WQgU8WXRPr2Xd27Azu4e9Vkca56b8qt5EBpFT8K2+nTqVDtJrcjay6JvjwTUUnK294xuVNwEicmP+gQA2JOvq0+P9DxMGRHycB4bN36cLa/JNP+ILY0hiLtyv/qs8zHiGgrMqRVsMSc6t8+mXd7aw9hp46FHM93Vd2CIGVMRAACGE1th3/edd6cIKOweGWFrlGhKzbfEDI3uHvUZUmaaJbTB2/n7g3qaeVR+/a4nSbsCk6aNndLOfZ2u/JNfs/inItITAGAq4UX2Tc/7DElP8a1Ru1RadRnvem7LaR2bsTQnoRIZcZsj9ag0v/qMGu0km1JmnrjpUVHL1Kem9aNnU3t31FQEAIBJbLrI7qw+jf0yt62ezkX52PRme76+dT0Qj49qFzeG4NzdPYl54to+PaGNiM1sm/kbfhZMm1zf9NjH9u0PMW8qAgDADDZdZ/f8nXcAAAAA6AT1CQAAAADrQH0CAAAAwDpQnwAAAACwDtQnAAAAAKwD9QkAsC+/36artMbjEgaA9Xz6eZ8av78Ub4kto27TiaU79ke/kbGZX70N9Cw6GT6XOpNfNgf6p5zfw/Ai124T+dfR13hYWXnDQ6IXAHyH2Brxvt86Ejm39sO3jEbbDFya/fvoERnRVpwJj63bVcANdCtahs+lnuSXTYDOOe8v3fsu2FB7bdblIh4jlovHLTIAsJj8GvFi9fkP/wI6asNLEHL7xC1hXt1mqM9DvwPa071u8wX1Ge342Qt2uPrs7DikOwC8m8wCUXye/lz1aX/AVFiMz6HEvnVjzWHRUtQWWjMtkGdEdUu7IEbyRuO0Ty3nRPLOIod82gOxLYbD5jnqT14biNbdfstISQtqn6Pa3iyI2LKzyIZD59jFZvbYjTzF7kZKthNtXKEqGSMSu2tGAPgg0+995v7r57J7n9oyXb/0G22f/k3CE725Y0XzNLqnOffmps86utbeSL7oOKRl0cved+u0x86lnuQ9cRM+D2nSiiWKzrrQxWWPK+dz8wtW87mm8tHTAQDwj1nq87jozg+qT6c08W8nmt3eeMZuJ2lEtWS0rHsd1X0X0SgGEgtipCS2rI+dozA6pudSZ/LGKOoi11G0CZYYde3Wbm9094QzOoojqtsbyde9RLto0aI7x35j5aOnAwDgHxPVp220ebr6dAadtJk14xoRPWkc1ZZpD/mqYDwt6152/sVB0dE4ZUaIaEHsNmPnUmfyzdkVOguGPaSBnBYuWE/0ZZVHfQJAjtgCkfjO++ZPXJq9mfl1wIzNzB5Rj/oM0aM+Pbn51We6ZX3czL9p75xL6eQ7ZcQMDdQf3RMu5HOHC9YZ8cbKRwsCAPCP8BrhfLRnz8M+j7Xq80S0iy2vi6/owe7eaRRTtZP3G7UoaU5X59+GZ/8Yj6omRqDCp6fltY2zIFoDu8hG6BnJ/yrsrMRx2X21NqHuhhOnURxOc+x2SjmjmGpzROdbzSodyjQQvXmS15yEutfRDTsAfI1N14Jb7n2uZ8O1mIIUbJiSn/7kHz384dxSjausXB/dpqmY/W8BwKfYdC1Y/MSlBbF2iy6yLKVfxcrofjZMyU9n8o8e+wxYLgo2TAkAnsKmC8cOT5sHAAAAgOGgPgEAAABgHahPAAAAAFgH6hMAAAAA1oH6BADYl8d9redxCQPAesY87/OQnirf88jPe9Vn/XXs61tiy6jbdGK5Xsb3yjWfW32bdey3ayd90V50MnwudSa/7HvKxsCHexhe5NptIv86+hoPnZW3J5jm0NkMAOAfsTWi+ZPuzZZOblefxd+e9v42A5fm0D56VJvEEOezOdMYW7dEQTxuRcvwudST/LLT2jnn/aV73wUbaq/NulzEY8RyscnSAQDbkl8jDLl5PFx9/mOsSpu0HL9efc6r2wz1ecSfv51o+RH1Ge34pgs21HhD9ZmLCwDfIbNAeD55f4T6/P2lfldsLPrRPHscFi3FpV9rpgXK+aw914MVo/tbas20lh7PzUDOgoR82gOxLYZD43SMSl4biNbdfstISQtqn6Pa3iyI2LKzyIZD59jFZvbYjTzF7kZKthNtXKERad3F6hlGAPggX7/3qS3T9Uu/0fbp3yQ80Zs71vXg+nci+TRGdLFl3cvTUgs0pGXRS9v1xfS0UaTnUk/ynrgJn4c0acUShXzaL198wYbyFH32VH7IcjFq9QCAV4L6nLKZOaWJfzvR7PbGM3Y7SWNEF1vWvY7LuIr2zWEmClK3rI+dozA6pudSZ/LGKOoi11G06Z0Yde3Wbm9094QzOoojqtsbyde9RLto0aI7xz688vYE8/jUcgAA+Afqc+6tFDvopM1M69i5nRTNmnu2J7qRvKh7xMbFQdExVBDNp+HKGEK/cUbyzdkVOguGPaSBnJaPXLDNPAeqT+1d1CcAzCO2QBiaEvVp+/QbtSii3bOLHIO2kzQ96lM8sFsa6jPdsj5u5t+0d86ldPLRYS7QQP3RPeFCPu+9YJvvTq18/3KB9AQAm/AaIT7F0290slJ9noh2seV1mRY92N07jWKqRvLn8fn39SAUK4EW3WjsGWOdpxHIWRBx7P5SaA2cFdbKPjb5X4WdlTguu6/WJtTdcOI0isNpjt1OKWcUU22O6HyrWaVDmQait2by5/Hv7wRrlq5wUkc37ADwNTZdC26597ke1uKCDQuyYUp++pN/9PCHc0s1mpJuN4w8nzIEAJjNpmvB4icuLYi1W/R7+VUcWxZkw5T8dCb/6LHPgOUCAGAUm65lOzxtHgAAAACGg/oEAAAAgHWgPgEAAABgHahPAAAAAFgH6hMA4LV87YtKXxsvwEMZ87zPQ3mkfO5hn8fd6lN7st0hPWzZ/0VUzWcosVyv/tCPZuzYJ31PX3QyfCp2Jr9sFvVPWr+H4UWu3Sbyr6Ov8dBZ+f4T189dcQHAT+wq1X7BSNOjz1Wfxd+e9v42AxdH/0bo7yI2eO6CfmY+tuxXATfQrWgZPhV7kl82EzovGX/p3ne9h9prsy4XMdp9xmrz3MUK4Dvkr1L7lzYNo4cdPnn3L2GjdqwEqE+beWWfoT6P7uKjPg0nK1vee72HGr9PfQ7xAABTyVyir/nk3f6QqLAYnyWJfevGmsOipSgOtGZaIKOx0VL06Q9k19MYu9E47fM0NttHh3ko5yjk0x6IbTEcin3HJq8NROtuv2WkpAW1z1FtbxZEbNlZZMOhc+xiM3vsRp5idyMl24k2Ls0idg+l5Owupm0bAeAWvn7vU1tn65d+o+3Tv8p7otuW60rtNIo+o4Guf/fj91mnpLX3Jz+kZdHL3jjrtMdOxZ7kPXHTs05TG82J6r+KP3K9h/IUffZUfofVZtTiAwCTQH1O2Y2c2iK0Iot2e+fYaj9I4/dZp3RNzNA3RiCjntq216y8Z7y2xWmckbwxirrIdRQxJdFtc4C1W7u90d0TzugojqhubyRf9xLtokWL7hz78Mo3p01z7HZKzplcuwWAfUB9TtmNnEEn7UZ2x7v2g6Jvc88unDd9iil5zq+dvFENI0SzyJ4h9BtnJN+cnKGzYNhDGshp+cj13sxzoPp0Okd9AsCV2CWqfee9fmkYPbxGffo38hm70cDoY9VniB71KR7YLQ31mW5ZHzfzb9o7p2I6+egwF2ig/uiecCGf917vzXenVv721QbpCbA/4atUfN6n3+hkpfo8Ee1iy+vyJ3qwu3caxVSN5Jt968XaaRQDHZf9oHYSJeTTX6KjKosRyD9M0ZtW5Dofe1Ba5oZxePK/CjsrcVx2X61NqLvhxGkUh9Mcu51Sziim2hzR+VazSocyDURvzeSbmdvR/cM8j8+/r2/VyRt2AFjPplfjLfc+18NqOJYN67lhSn76k3/08IdzSzWamuxlGMP8SAUAHsGmV+PiJy4tiLVb9Efzqzi2rOeGKfnpTP7RY58Bqw0AwMmmi9EOT5sHAAAAgOGgPgEAAABgHahPAAAAAFgH6hMAAAAA1oH6BAAAAIB1jHne5yE9WP4Rz/sEAAAAgJXE1Kf2W0fio+bFYyeoTwAAAIBXkv/k3f6lTdQnAAAAANRk1Kfzk3fPWxqoTwAAAIBXMuveZ9Nug/oEAAAAeCVz1WdOeh6oTwAAAICXMlF9pqXngfoEAAAAeCljvvPefBkF9QkAAADwSsY877M2npbcIz9RnwAAAACvhN86AgAAAIB1oD4BAAAAYB2oTwAAAABYB+oTAAAAANaB+gQAAACAdaA+Af7w+wkXhWiEN8F5BwBYxqZr6xPVJxvVO0CFfBPOO2gwDQCGM+Z5n4fyW0e5h30ey9WnuLb8fv/54/PQaPf7i9FXbONx60pU8pDuuCD61f+vQjOK3XtSmlGlJ553sfJNn82xOwNx3m8/7z2h+7lx2tw4aoBXMua3jsTnz4vHTm6/93kuNQPVZ/F3p8OizcDF0b8RHpERpWNd94P6QDOGQjTbdw7wZef9upHnnHPeE4FuP+/+LpME3I3TBvUJMJaJv/PueUtjH/Xpa5zcgztbTloQQ247c3i9Col23/+8oz47faZb3n7e/V3epz6d0QHASeZycn7yrrX0sEx9/qqP10/LL/Wx++8vRstrY9un0VhzWLQUFYPWTAvkGVHd0l+QX8W1zfXvuqOWjGY0yDn5znl3+qw9a/lXp53zrjbWHObOkZG83dhoqZ3Knu7i8H8V1za/CdPGeAsAouQvpzfd+6xXldA6U6+nnrdCRtun9m69WHuiNxf9aJ7RgojRZ2wnRriEk4+cd/F0JJKvUxKjc963Ou8eo+gzGsgzwURQnwCPAPV5HA9Rn1eM9qH9QLSLFi26Z+yokDedd7844Ly/77z3RLdDJyaYyLxpE51RAGCA+jyOh6hPZw6TdqNmXCOisyC/itrPB1WIM+iy8+4XB5z39533nuhj1ef6aROdUQBgELucjG+yP/o7753q83CvwkN2I/+SOmM3SggOTxoGue0kHX1bFbLJeXeKA2caBpz34niH894TvX+CeZg0bZCeAGMJX1HiUzz9Rifrv3X0u3zHqLY4/Mj/KC/aFMbfXwxjs3unUUzVTt5v1KIcjjW9Lo7xVj0i0diM6DRqqYYKouXv7N5pFFM1kr8WtngZivXjvD/wvDuHqfn0BzqqCXa+e5jU3pwj+rWmTTM0AITY9Iq6/YlLCcQl78Y09mHDlAzEbD1D4Lw/Gs47aFBkgOFselE9UX3+Q7sT8IXoIhumZJNTIZz3p8N5BwBYxqbL1nPVJwAAAAAYoD4BAAAAYB2oTwAAAABYB+oTAAAAANaB+vwP/Od9AAAAgAWMed7noT9SfvPnfZ4gPQEAAAAWEJNc2i8YaU+V3/9p8yeoTwAAAIAF5CVX83fe/1lQnwAAAABwkpFcnk/ez5eoTwAAAAA4mXXv81nqE+kJAAAAsIYp6lM79sO9TwAAAIBXMvHep/bteA+oTwAAAIBXMuY77/XLpt0G9QkAAADwSsY879N4CGju9ifqEwAAAOCVbCq5+K0jAAAAgFeyqd7id94BAAAAXgnqEwAAAADWgfoEAAAAgHWgPgEAAABgHahP+Aq///kVB82WzgZ1e62B4bkZNJGb02eofbpNs2gJckXrnAC///n555I/KADAd9h0QUR9gh9D6/wTCvafpkO7jaYqRBXYlDXGu54GYtzCYlSg2bLo4vGjGUO6TTtfHplY9G2efSN/MQFx+M6aAAB8kzHP+zzM3zp6xPM+R2E8uel3IeHzX6+ch3n8fv/509kmn4BD6BRG8ValR6SGtGxTffq9hdSzU/WKMi4nf41BNSN6MEbkdBINbTRonuKETwCArzHmt47E58/3pPVc9XkoD66/GhPasVCfPekN5EzEk9HO6rPZN41TMtpxPW95ZKvY63qQq4xT2xli2gha5JZQn1pNjFE4C+5MIzpeAIDXk18Hm7/znvZ8vE599uvFzdXn8MZen30yLiFBahlR6w+P2utJ2zMEW+Z6RuHMoXlXtY5YNJuqPou+xmDFMxiS8mKzxHgBAF5PZh2MfvKeCPF09XlyWpqNry+vBx570f3aUnzLk7nd+Pf780d8q+5iOHF0D9/jPPRbj04Z0XRe/G231HyKqYquDE1T+GnGFUPk1GdneeepT6dn+9j26Tn7hQX1CQCw4t7np/7f5/FXJ51C0Nny+Ksvi4PCm9bdaezHlpi1Km22NLoL0Vvq0P/WUYk2Q0IVdlt/NDWZmF5TqGlSRhN8k9Rn6N5etCBibiH1eU2yGdGjPkXp75HadeYAAF9mlvp0vqXxEfV5thEV5/W4X3167mhG0TyJ9y9FqVq3+Sm3VIUoEfXpuS2naT7N6FGfxbGtzJov7YM6E21cfg2tpaTlZig8T3mNEGn1GYpi51YX2T7LoTkAAPAdZqlP7n1ejw3Bp93mFI0e9SkGdSrOX0WrvWVsqs/a7hfGCenZbOxUn07dZkuQUOhCYop3HEOj0Jr1q087hF/s9id8VCfL8y8QbSx1RG0szTxRnwAAsXXQ0JSoz5PQLcmQcYj6nHrv05CSxktRsNppOtWneEfQaBwK4VGfUZ92JtFRGBmG5LvxliaIizRCOk+L7hm+nbyhWaPq0+ir/RMllDMAwIsJr4Pid4n8RidPV5/ivUPbKN50LCzn33WDOgctq3HDbHzr6Hyrtni6GyOKKqdDuQ1mewhplMSdOc1JSGMZqtfQf8ffgtiB7LGIyjiRsEGzzonuHtXuiShOJNGzf0oAALyeTZfCR6tPmEG/+nRaRJ1aq5bCaGgXj7fc0DRNqTW+5uPx1kzAIDoQvx+t7M3u2mnSzpEh0I0y2gk02wMAfIFNV0PUJwAAAMArQX0CAAAAwDpQnwAAAACwDtQnAAAAAKwD9QkAAAAA6/i6+hz7ECIAAAAAsBnzvM9DeaR8+pGfK+99oj4BAAAAlhETXtovGNl6FPUJAAAAAP/ICy//L20mQH0CAAAAvJKM8PJ88v7v5SN+aRP1CQAAALCMifc+n/LJ+4EABQAAAFjFik/eN1efSE8AAACAZaA+UZ8AAAAA6xjznXf7JeoTAAAAAP4x5nmffqMT1CcAAADAK9lUePFbRwAAAACvZFPhxe+8AwAAALwS1CcAAAAArAP1CQAAAADr+P8BpDJM4F/nAzUAAAAASUVORK5CYII=" alt="" />
这段代码根据马里奥移动的方向,找到它移动的边界点ptPosTop,ptPosButton, ptPosMid,再查看这三个点上是否有障碍物,如果有,那么马里奥不能移动。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAngAAAERCAIAAABn5k1iAAAc2ElEQVR4nO3dXZLiOhaFUc+nJ3mn0IO4zz1E90NWEU7rnK2tP2PMtyKjghSyJAunNqYAb/tb/fvvv+8dAAAAS23v7Z6gBQA8G0Eb2/4JZsYs3P7ZXoU/t8ufkWFU78q6NjsNGz/tVHc7Tff6s6fHFu5OU6dinACgfWPQirW4XK+PlcPbZaZ2D8BZ5TuyJ+tU9PhqszqGamHrPFTvrT6JcUbiNG6OEwC0dAX5z3//9/NTlofVwspV1wdtNZOOiXtadsNqx0wyOzXHENY0q+1RDmXDe1V2xt+UQP7ZZ9PzALNNMRJRzewRAEzxCnKMzNPtMmjLar4bBm1YkgVteKPaftMZbdjUMebNnaoO79RmuG34LCRrs3pyWQ1acy/8aKzW5IwWwHT1FSRLVl3NdHHQmoFULsRh0Oof3YUehj6j9U/yzOzRA9BhqfuqNp41GFbTu5C15gdquCNi6gDAoVYQ56Xjarl2w6ANC8VS7uSBs1L7QetUc1SzU9/l7GaWqU6YmU9iTr2YY9NTNzixAHA054y2L2X3a4PWT9myPAva49I/eBraFCrH3suBVX+q/YYVwh0XeaznJCsU25ozVh2bOWZnkABQRdBaqZPl2V5kXtaROR6/BT8AzDzLSvQzCR2H5r361+rEOjXNoA33NHvSAwCObwna1jMqvf7ucnE/3hBnWv5pqFMnPBMNN6xOQrmbp6bC8tbpyrY6teCcqrbOhpglXRkAOsTrSPau4/JXUei4Z9A65SKfLjijdfoyx9MUtKJa9ZlE1rjoV+9I2VF5Jip2JHzaoXsEgA7pOhJ+NNb8cK3vmqCdkrJ7Hi3lXdUWWsNP3CvOU0VMnjZvOusVEVUdQGvQOhNb5mv1DLs6ct0jAPjevI7cLWh1RprZ7ARbWaJ/jtWqzepzzepoRWw7EVsOwN/Z0yZNE5tVqM7GsbvWHgGg6iuCFgCAdyFoAQBYiKAFAGAhghYAgIUIWnyAkbezOe8+GxyJKG+qpt+rBeBDEbTKtrHGjarOochL/T5k/XEgkVLO+66dd0c3tanLs72obgLg/to+R7tHH5ntvhjtfv1FBaLd3bY/P0X59roRpsX2W96pqlbPIdn4oGzfW+vUerE+mhwWHhP3lENhteOnoUSn/imjSFY/j80E5YwWeKT4b7jjerR719dWvP2M9hUBImj3JCp+Co//5r1UmqoNMjk9Ggtgse+icldH/UEblmRBG96otl+teUxxp0FRoRq0TjUAn6X+N6y/gvExQVuUb+JX866wzg2DdnrlaPPO/2QNT+/CoPVf7DVPGf3Ymxi0nNECz6P+hv2XjsNyx3XfdVy8/vkq0a8bv371X/sta4abiwZPd71Omo8lYbWyPClM9z2fkKBEzGp1lvaW0Bo5o+0IquyFX+dX0eBIwAP4XKNntPuH/x9txxmtuCur+co8v6MykqsjaaVnowzgak25eeXVYFFYljf9H+3xxuCJbzbmjhDNdKQ4gJv7rpeO3xu0ZWWxedbj0qB9lYdnumG1cMPorp6gzQIse+n4eJdzXqhjLHxptzpg3Y5zcnwaOS8gA5+OoM1qvido99/nr7r3spr50vHf+nspPD3NKp/KRe6fh9pyOlveNfjScXaOWx1PNVa7gzZ8ZkC4As8Q/yX716N9atDuLfFW3apv89aRtNKzoYM2rJltPvd147Bcp6l/l+5X9+gUNp0BE7TAM6R/yf71aD/i/2jDVzWz1zn/3vsr0sozwmO5KAx/PbVZVq5uHv7aNyFZ+c9dTVOXFPafzpqnueFry2EL2YvPYfvm/7zq0TYFbTXLAXycN/8lv/3jPdrgKeNgj9f3vsLI6axOWTObs+iq5qj5YrL48euEe0TQAs9A0N5OeJYMAPhQBC0AAAsRtAAALETQAgCwEEELAMBCXxe0vM8IAHClts/R7h/+Xcf7Uz4zAwD4FG3fDPWA69EStACAK9VT50lfwbgTtACAa6nUcV46JmgBABCmndH2/Tft5RcVIGUBAJcaDdr9ELH3D9qdrAUAXGtC0Dp3ZQhaAMCzTbseLR/vAQCgNHo92pEP0e4ELQDg6fhmKAAAFvq6oAUA4EoELQAACxG0AAAsRNACALAQQQsAwEIELQA80zd/wuK17+EkXDwzo5+jzQpNnx6020FWuP1mNrtqxLLTcsx97fh96V6O49m7Ppqlu7jVZ71G5ly3NrHl+0yXds8DrHUdGDT9WBocub/t+MhPLYQNXnkwN3wzlF/o++igPf0JtRbOHcCUzU9L80jjfQPI6hz/ndvRTZIjPFTG21zxaN5kxo7CI3n3DpvLDrBFi4AwcXfuuYL5Ld80aI8I2lDTI3fPw5SgHWlzokVjWPdo3mHSjpy/O73txUF7gbmnnvdcwZqafW/Wqm7EC8IE7ZSgLV+NyUr238vl9pseZ1kz2zxbmltHlY1BT0vW9enfpiGVHZUzUE5aWaepZlYtq+m0XO3InxC/Tb0j2X7pjvb8mMkGJvZIDz4sKdvcrzrAxKRldzlttu672DwbkrjtjFP06+9O2eAePRbhvo8XDmo4ow1LCNpq4W781ZVHarl5dStnqHrz17F7vFf/jenudI/Obl48pG7hOEXNciunZtbRlJqnrbKl0NlcFGYPsVN4aiGsIMoHZynr3ewobKFp6sxC/auzGoQzXB4Jg0MKS6ob6mNJNOsXrtActOJXgtY8bspC849Eb+UMtfrndPr3eJf4M+sYvFnz1Wn2dzV3SN3E1InBlOt7uZSfCrNgKJdC/9GceFDpCk2F5R45fYny+xxgzsyLx6isEx42To/mJPsP8f57JnUjgw+cU7+jcIW2oPXPbk0EbVjB/LsdXBOz475cmptWZH/RadpNZy9mrYOvu8RCFnZRDlUPRu/aHs182JE4wJxHs/Wgal3Xqh1V58Hvyxznew8wc0KymtXxhHeVx7A/ya0rWHdJWP7YoK2+70nX9H1u0O4tD/9HB+26Ree262CHkaANb+iazmPUWrO8XR1/a5uLHuKPCNrLCv2Rt64MzuZN+bcoaJ2uRe8rpD2JS89OvCTtRwft/vdJYvmgHgvDOtld229Za6f65iDDw7Fs+dhvdVR68FN28zgqs01/SOG0tBJTl1Uu64RbbZGwo2wCRc1jHXMqsgpij6ojzFou2xTjrPauC8sBmL2Xk5mVV6uFvYsJFIXH/TI7KrfV/U6ZpT06DHQL4tds38tfRaEoH3FdpIc+PWg/worjBt1u+HDccEhfYvXMH6Posk5vItz38t6mu/oHM73FJgTtauLZKJbaCvstH44bDulLXDzzPNBvRNACALAQQQsAwEIELQAACxG0AAAsRNBejTcj3BOPC4BFGj5HmxXuXV9V8eMBQRuuz9v256cob17NZ71n1dkq+xBbWO3VZseQdBfj742sbh4OgKwFsEK8sjRdEa/72yr2RwRt6bVc9wVtWecUtOMjbB1AVuf479yORnbTSdnqbQCYpb6yOFfEI2iPsuXaXMcJ2kVthnU4qQWwmlpWnOvRhr/6Pjpoy9eHXyXV143DF2mzV26zoDVrZq/TinKn6z0KWn/we5Rq4e6HdbK+stZOEyI2yfoFgD4NZ7RNJaaPDtofUaBmNdM1XSz9e5JqYvMwLczew1/LTi8eUrahv4nZEUELYLrmoK1ew6cJQatvH0vK08fdOKtr7d2sGZ6n+nvUOqRw22yiqghaAFdqC1rzlWQfQatvH0vKoG06sZsbtHo804cUbls9S94K1Y4IWgDTxcuKfz3a6l3aVwXt3htLra/TVrvWm9wqaPWZazVrq/32vfgMAL50ZeF6tFVb9NansuT3JvH5VlktfJE2vOvYSNhmeFZ3LBc1y3PBU8iVYSna9Id0GkDWRXlvOc+hsmtnKwDo8OaV5aODts8pqHATPBwAFiFo3yM8owIAPA9BCwDAQgQtAAALEbQAACxE0AIAsBBBOwFvawIAZBo+R9tUaHpM0L57CACAm+r8Zijn2nkOghYA8GwN33VM0GYIWgBARiWEfz1aUagRtACAZ2u7ek9WkhVWPSBoSVkAgNActFyPtkTWAgAyE65H252yO0ELAHi60evRjqTsTtACAJ5u9Hq02UVqTQQtAODZ+GaoCfhmKABAhqAFAGAhghYAgIUIWgAAFiJoAQBYiKAFAGAhghYAgIW4Hu2NiI8JbQcdbf5s1dfCOtv252ewDgDcGdejvZcwBY+FHTF5CtqR4U30GogzotuMGgCajV6PNqzpI2hPyiAcj8abB+30ygBwK3OuR8tLx7OULxGLaCxrhoGqy0+bhy8yO685b4W85q+f8K5yE9GIsTlBDeBtpl2PVpQLBO1J+Sqx+F/b8naY0Md2wvzuKByn07QM4GpNsTkAvNGc69FW78oQtCd+0L7qZKe/E4PWOU9tlbWUnemG1cINefMUgFuZcD1a894QQXvSFLTZyWtY6ARt2KkZrv5Lx3/rq8Jq0JblhCuAe5p5PVqCdtzgK7qrg5aXjgGgVbogmdejDWv6CNqT7IxQF4ankqeS179lhXIM2ajm7WblzVCvu8IXhKubV/cIAC7z5gWIoMUFCFoAb0TQAgCwEEELAMBCBC0AAAsRtAAALETQAgCwEEHbb+4nXgAAj9TwOdqs8HVXR/cfHbQ7nxsBANR0fjMUV+/5QdACALSG7zrOgvbnNkELAEBJ5YRzPVr9TchVBC0A4NlGr0f75UG7k7UAAGnoerSDl+7ZPz9oSVkAgDZ6Pdrwej4+ghYA8Gyj16MNN/ERtACAZ5twPdqwsomgBQA8G98M1Y9vhgIAVBG0AAAsRNACALAQQQsAwEIELQAACxG0AAAs9C1ByzuEAQBvMXo9WvHhWseVZ7QELQDgeqPXo+37QqgXghYA8Gyj16MlaAEAECZcj/ZTLipA0AIArjfterRhzaqL33VM1gIALjZ0PVpd08EZLQDg2SZcj1bcW0XQAgCebfR6tAQtAADChOvR8mYoAAAyfDMUAAALfUvQAgDwFgQtAAALEbQAACxE0AIAsBBBe53tn2C2zcLtn+1U+FNy/BkciShvqlYOrHV4ZV/HRnSD3R3Nas3fpGMXwgNj1niyrcoDT28otu1oUG8LfASCdg6xoLzuKm9kt483slCprlZZ4I20qcuzvahuovdiL2ZSN3hN1p5mMpzb6kPgzLDzQE8fv85LcbA5vYsewwdaTxrRi/sbvR6tLq96b9Bu25+f0XZqoRWmRRYe2YpTtu8s2cfKTiPOaqsDrylRThtmhTpoO5JMD6N7NpzGOzoVB8n4gxXeFf7qd6r310lKc2CiELiP+AD1r0ebVTDd4Yz2gqANS0R4OIu4/7z+lFVirc9aEKMy126/8VPhaYk/3a423he0YjxONdFy9+SLNnV504PV9OxBPNcpS8KD0HlWZB7nZC3urH50PuZ6tJnBoDVXB7HoiGpiGXIWqd1ecLPCjqacwTu9Z7OUbd7RqTMkMbFZWoRd6yc6IueOheIZRhZIor44GrNOzdjOGgynVD9MBC0eQB2d5vVodU3t2q9gjF8oDkvKyunmdmiFS0a2pGY3fGJRrv4qGhwJeN24KD9Fgg7R8TW3+qRkjx6+auVsq7JCeKMs17nux385MLFfYhfKSBZBWx1hVm2PELS4s4Yz2rDkGLF3fun4FJnZXVnNbHM/ZcvyLGjL84zTjerPqRdntfUTVOyg3tOmTU7l5kLvd+ePpyk7dZiJZjuC1hyqno2OoBUd6RytDjisEw5P7AhwQ81BK369edCG56l7fkbrbO4sbVmGhRGSrdrdS4xe98NhiGrVu8oGy2cPTXvRF7TiOUc2AGdgIi3EY9rRWtiUbrDasrN59VlFVrP6MGU7G4Zx+NiJ4em7gLdrC9rPvR5tmabVu34FalSn9QTCXJv0jbByFi16Q7N9sVU4kmrLoWrQiicoZo9m0IZPjLIwyOKkOyZ1Lp5adraqBu2psj6qdZw7h9/IsAlafKj46Hze9WhFaopfX7fjwpag9c8Vwns7cqW6YVM1f+1uGp7ZTl/8mF1Uh9SRPSOHgS4P033wWdHxLrFfTQeJ2K/yycpWPE3Us+ocgcB9pAfoE69Hm76/6VheloSbT0nZvVhQwvOksgUzV/ZoLctGrqs1Ba1+9qBHG5boRd85J2sdiehCtFbtYvywEcEZ1jEzSYSZc5hljTc9Cas+ZanuLHBPbz5G7/Dxnj7+iqlT1lxkda6YAdk0yLId8SP2aHAd7DvNqj6x0D2GW4lTrrBC1nhWaM6w6O44S35TYTuvwurBNvJ0pHrkiAe3bBa4LYIWAICFCFoAABYiaAEAWIigBQBgIYIWAICFvi5ot23bNt6yCAC4SMPnaMPC7MO1prcE7cU9AgC+WZw6/vVoB6+XR9ACAJ6tnjrVC79nJQ6CFgDwbCp1nOvRihIHQQsAeLaGM9qmEtPFQUvKAgAu1hy01Wv4NOGMFgDwbG1B67+SbCJoAQDP1vmuY1G/CUELAHi2Cdej3QlaAAASfDMUAAALfV3QAgBwJYIWAICFCFoAABYiaAEAWIigBQBgIYIWAJ7pmz9h8dr3cBIunpnR69FmhaZPD9rtICvcfjObXTVi2Wk55r52/L50L8fx7F0fzdJd3OqzXiNzrlub2PJ9pku75wHWug4Mmn4sDY7c33Z85KcWwgavPJinXY927/raio8O2tOfUGvh3AFM2fy0NI803jeArM7x37kd3SQ5wkNlvM0Vj+ZNZuwoPJJ377C57ABbtAgIE3fnniuY3/JNg/aIoA01PXL3PEwJ2pE2J1o0hnWP5h0m7cj5u9PbXhy0F5h76nnPFayp2fdmrerGvB7tz+1ve+l4StCWr8ZkJfvv5XL7TY+zrJltni3NraPKxqCnJev69G/TkMqOyhkoJ62s01Qzq5bVdFquduRPiN+m3pFsv3RHe37MZAMTe6QHH5aUbe5XHWBi0rK7nDZb911sng1J3HbGKfr1d6dscI8ei3DfxwsHNZzRZiXf+X+0TY9Q07Eb/no8wqrdiVHpzV/H7vFe/Temu9M9Ort58ZC6heMUNcutnJpZR1NqnrbKlkJnc1GYPcRO4amFsIIoH5ylrHezo7CFpqkzC/WvzmoQznB5JAwOKSypbqiPJdGsX7hCc9CKX3np2DxuykLzj0Rv5Qy1+ud0+vd4l/gz6xi8WfPVafZ3NXdI3cTUicGU63u5lJ8Ks2Aol0L/0Zx4UOkKTYXlHjl9ifL7HGDOzIvHqKwTHjZOj+Yk+w/x/nsmdSODD5xTv6Nwhbag1We3BK153JSF5h+J3soZqvPnVC7NTSuyv+g07aazF7PWwdddYiELuyiHqgejd22PZj7sSBxgzqPZelC1rmvVjqrz4PdljvO9B5g5IVnN6njCu8pj2J/k1hWsuyQsf2zQ+tej/dqg3Vse/o8O2nWLzm3XwQ4jQRve0DWdx6i1Znm7Ov7WNhc9xB8RtJcV+iNvXRmczZvyb1HQOl2L3ldIe/KvR/ud/0f7Y/tLFIZ1sru237LWTvXNQYaHY9nysd/qqPTgp+zmcVRmm/6QwmlpJaYuq1zWCbfaImFH2QSKmsc65lRkFcQeVUeYtVy2KcZZ7V0XlgMwey8nMyuvVgt7FxMoCo/7ZXZUbqv7nTJLe3QY6BbEr9m+l7+KQlE+4rpID3160H6EFccNut3w4bjhkL7E6pk/RtFlnd5EuO/lvU139Q9meotNCNrVxLNRLLUV9ls+HDcc0pe4eOZ5oN+IoAUAYCGCFgCAhQhaAAAWImgBAFiIoL0ab0YA3k6/JfVLfPO+X6zhc7RNhaYHBG14rG7bn5+ivPnInvWeVWer7ENsYbVXmx1D0l307WPTJuFuZu8QPlbbCtVCf39P86k7ynanu/dFwtF2t6P3xW9qfDxzWxjsSM+JfvTnjAxSPMtcj3bE69DtC9qyzmnFHB9h6wCyOsd/53bUvRa3VnvdXlQYVsiGFM5n9mvZ42nzcEii93Vmte/vkd/OYFP3oSeHoH2v+iwTtK2yQ7cjBl4lBO14m6KOswzpyMwK1wXtSE1n8BPdKmj9h++z9AWtvguzqCl2rkf7zUFbvj78KtlqrxuHr4OFhfthvQ7LqzXLatVyp+vTv01DKjsqZ2BPnBoU498KWddZd3pbs7CcpbCjrKb4tbtm2Xs4mafC8LZ+fMMW/MMj29wcZ1Y5nAExP017dKpW7qzu6zj46r6UQxJd79Ek+/uOEQ1ntGHJMXG/LWh/RIGa1bTWwewv4fiv3txZSkSP4apxuuviIWUbZtWctSPcr7AdsYxWC7NGREfVh8O56zSkcBXWD1xTYXaE+OPMNq/+mejC7K/JKRR1zMeoOnjR0cjBEO51NifOvmNQc9CGuftTSNBmJX/LZwbt665wce/u3ax5Wrtb96h1SOG2ZrPVdpwRjkSR7uJVs5zPssGs09aaZe/OjowX+uMcDNo9P0K6g3awze033cvpX9Fm9Xb1XoL2Am1Bq6OUoM1K/pZPDlpnUWvtvXWczl5cGbTlUqtXt5GgzfoNN3f2KGznO4N2rz3neEvQZpXNoG1qn6B9kniKO65Hy8d7RMnhrp5YCv/w1qXarYI2XC7DSRAdiX6X5srSoB2JZLHhTYK2Gl3+zOt2wjr6qDNbMMcpRtj9EPuDJ2Wvkc6yeT3akQ/R7h8etFv01qey5Pcm52fc2Z90+af4+vd017GRsM2y2qlc1DzVOd3eo7980aY/pNMAsi7K8TjCrrOdLX8VsxQWmsPbivnUHWU7lc2SGIA5IdV52ItHRE9UNuxwSGF35r6HU539KrYqexeTICrrjnbvYHDKxfxk+44V3jzLHx20fTjEgapTZqxr/5v/DL953y9G0L5H+QwU32ArvHtE98UU4TEIWgAAFiJoAQBYiKAFAGAhghYAgIUI2gl4ywYAINPwOdqmQtNjgvbdQwAA3FScEFyPtglBCwDI1BPC/+ZFghYAgBOVEOELwuX3Moa3TQQtAODZOKMdRcoCAASCdgKyFgCQIWgnIGgBABnedTwBQQsAyPA52gkIWgBAhm+GmoBvhgIAZAhaAAAWImgBAFiIoAUAYCGCFgCAhQhaAAAWImgBAFhowudo966vqvhB0B6JjwltBx1t/mzV18I62/bnZ7AOANzZ6DdD7clFfkwE7UmYgsfCjpg8Be3I8CZ6DcQZ0W1GDQDNRr/rWNRxELQnZRCOR+PNg3Z6ZQC4ldHr0b4K+7onaE/Kl4hFNJY1w0DV5afNwxeZndect0Je89dPeFe5iWjE2JygBvA2nNHeS/kqsfhf2/J2mNDHdsL87igcp9O0DOBqTbE5ALwRQXsvftC+6mSnvxOD1jlPbZW1lJ3phtXCDXnzFIBbIWjvpSlos5PXsNAJ2rBTM1z9l47/1leF1aAtywlXAPc04V3H5a8+gvZk8BXd1UHLS8cA0CpdkLge7VtkZ4S6MDyVPJW8/i0rlGPIRjVvNytvhnrdFb4gXN28ukcAcJk3L0AELS5A0AJ4I4IWAICFCFoAABYiaAEAWIigBQBgIYIWAICFCNp+cz/xAgB4JD5HO4SgBQBoo98MJb4uykHQAgCebfS7jgnadw8BAHBrKif869G+7mrtnqAFADzbnKv3ZNWqPj1od7IWACBxmbwhpCwAQJsQtN0puxO0AICnm/mu4w4ELQDg2UY/R/sq6fsoLUELAHg2vhmqH98MBQCoImgBAFiIoAUAYCGCFgCAhQhaAAAWImgBAFjoW4KWdwgDAN7ii65HS9ACAK73RdejJWgBANebdvWerFAjaAEAzzbnerS8dAwAQOiLzmh3shYAcLkvClpSFgBwPYIWAICFeNcxAAAL8TlaAAAW4puhAABY6FuCFgCAtyBoAQBYiKAFAGCh/wO2hPlEyEASGAAAAABJRU5ErkJggg==" alt="" />
以上代码判断马里奥是否出了边界,判断出边界有很多办法,这里采用了转化成世界坐标来判断的方法。
这里要注意的是这段代码:
CCPoint ptMarioInWorld = m_pGameMap->convertToWorldSpace(getPosition());
首先getPosition是马里奥精灵调用的函数,它返回的坐标是它的父亲节点的坐标系,也就是地图的坐标系。
然后用m_pGameMap去调用convertToWorldSpace,又把这个坐标转化成窗口的坐标。
这个窗口的坐标,如何x<0或者x>窗口的宽度,那么我们认为出界了。
如果大家不怎么理解上面的话,那么建议好好学习cocos2dx的坐标系,在之前的博文中有。
接下来就是马里奥的移动,如果能移动的话,根据马里奥原来的状态,来控制马里奥的移动,这里选取一种case来说明,因为其他case是差不多的。
马里奥的状态有:向左站立,向右站立,向左移动,向右移动,向左飞行,向右飞行六种状态,我们看看在移动状态下的case是如何处理的
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArMAAAFsCAIAAABQBaYrAAAgAElEQVR4nO3dWZajsJaFYeZTk8wp1CDucw2ReogbQEin2Wro7P9buXI5ZCEJbKNtsPGyPsZ//vOfu4cAnG75txQ3invNf62NN911Xmuzqh03wpStASDwoFcOyQCv5s30qz/fi3N/U4YoKo/UCQZWtyAOu6m1dLRpoTgAAEfSK+d//vf/fv71FYq+Nhksv4rbHe00ddfXS7flr+7FT12kmz41Ku99W+fdoE2xmtKdGG7G6wQTfNPETzIA+uSvnOM0v93WC3VfmwzW3znseOO8jtLbeguzej+j663yYKdqd3ckA+Ut/nbQYlsk7jq9d2TxvkMLxRYTV0E58gHA1PaCIRmc5JZkoJSP1IyXvSwZdLfQ0FfjhJdO/HOPGegBIh25UnNiMlCOItTV6q1BMgCaqC8Y88TB6ieAhyeDZdn/1YV9NZ2O/hzQ9hJAXJ7WrKsF5fWfR+ngvTUKBm+2ECwebI3Voo8zWE2zZZEyc+sHz70G4/a9BUeqxZ16Nc1TBkq/TZ0qTZEMgD6dxwzW8CMFD/+cQTHHTyl0OjJmtWK6Ot44/u8tXrTgdRcsbrZQNxj0rtQMCpVxBlupe5xB4UgymPK+ua6jpIeJZxOCHFOUe73XTSnv3dO1MLOFciAh7hdAoDMZBCcO+mLBelMyqO8yDw+YddLDBub71HTKNGfxdM4zF4wXEdtMe9cTjBJ6xMJ6hMpWGkkAnqZkoMzlTR2ld4l10mMGZqRIjxl4N5Q/t8KiazGFBP0CiE1OBt2xYH1AMjCPCtQl+uSiz8deMkin0qC78WQg9t5x79xkUBe2Vu7WEQuCyt4b6HpWDmoGb+uVN/rB+Ou70mRgvuP3lo0PeKxrmRLiwCGuEYBa/oLp+25Ch+85m+AVFskgnT6D7pp6N9scrHlvoTnOoLA7MYjJwJzdgxb0vsRG0nfPJyWDpmGkySAYcBqk7PUBYJFeMOKlC7aSvksa3PIJRLNwu2txzhqYhU5Hf45ye38WycCscLy3mMzqamZ33uLHu8zBm43ENesFzT/Nxb0FT13NtV3TAYPt3qazCeLx8KZ7lUMXelNNg+lbC2X85iJBsAAQeNBr5pu/tYg36ksGTfVXayIUTxPEyaOupp90iKulPYor4nUab65VTjkAPA962ZAMAAC4HckAAADsSAYAAGBHMgAAADuSAXAF5VP93Yt733To+5Kk8pH+we8vnNrgeI9NxE3a+rWUoAvzw559j3XdSDDCuY+s8r0bcaUGN69I/O5McNfgq757YB2bgmQAzJF+VUHcTSgf1/daTvekTZ/tb9plp2MrKkz5QkRHa8r4m3R/XSKektMNcrydPveaVkGcAs2tGo/WXFx/LnmVxddCquOJlI5w4qu+e2A9m0KpJF7PwCsUfW0yWH4Vtzvaaequr5duy19zF08bPHt99V1Gx37fbL9vb9g6jaUVlMrx/itopFhwfL5p3bcqvH230m/HKqxdT6S6vtmC0q/3p0eZy8WxtU6ryvBE+gxtPgpTXvVNa9T0IjUWT2v0XQPx4Vc6eppt3jp9Ajs07t3WW5jV+/WLK+Vtjfe+aTOn/KbdnLnPah2nPmWaA067a9qnxysYrEXdo75vbd17xlNX0G+wTZT5I57IxWn1WHJsJ33ovX71TWRuhODpEYywbq1uuUO6kesRdnQRdxq89MQXoP7Mt0fYVFsPASSDJrckA6V8pGa87Cclg/SVme7KgwXj1sQXfLzfaZo+06bqPVrQplLTm+3M6aFeqXhrK3cFvBku2KTBZGM2Elcrngni7Cs+neJhe7nBe3YVT5J4U3iLeF0H42ylt5a+kCe+6r1yJRYEhR61qnniYLUSwCvOJizWZY/rkqaaTkfLcbL3EkBcntasqwXl9Z9H6eC9NQoGb7YQLJ5ujXgTBX15281b91Ujvg6DaSyuFrfWNEl7PXrTQzxCPVsEu/5gsj/WMRcXh+RNTt6OW6cnA31NlWpKZSUZmMNu2obeBon7CrZP3KPZi7jdRK0vQK+C11r3q76pKXNr6JulbduZv5KQ1hR9zy8qFXPVduP4v7d40YLXXbC42YI5sypNefcGhco4060UjCEYRrptzcqx9HXuFTZNlukO12tT6VTfBSv3buXKiigDFhdp6k5c01iwpw5aSzsSK7ROMN5ovf/NFsxGxGdgUC14TIPxmLoDgdlCnEWOt8Vn+Mirvum1HNxWdCaDV59NCHb4i3N4wKxT31W19sdWeKxwvOFNnMUs5c1YejIQK4i96wlGCT1KYTyGpo7M1pr0JYNg556209TaSDKIJ36lQtzv6uwQi6W6c4YyS3nzlrgnTacub9jFKojV0saDldVbCB7feNb0NmZQ6HUU9Fg/Usp2a3pMzcWDYQSrMPFV39pUsMFTJAOjvK5QZAW5I3U+9pJBOsMF3Y0nA7H3jnvPTgZrmEvSMeuUybguj3eRytywLRjsxL32+waW1g/Gpg8vLdHXN13TeNev70n14R1DgNJa0I4yOaXJoF79+EnV8af3HIif9novZo/xRkuJD2hrMhh/1Xe/TuNq9rJpjc/7boI5zQ8WOh21zXlFMmidyZSJUG9zsOZlhcqfrWu0WsHC1JEMlLlQvCvY9XudijOWOU/ULQS39f1mHIDMAcS7uaDC+I7eXCoIHF7X8QYJBllv53gWMXusu4gfPm8w9diKwejJYLWYjcQvuvS10GcwGUx51Tc11fd83usrlT7vegZL9mHDn7sW56yBWeh0tBznGO/PIhmYFY73FvNWXc3szlv8eJc5eLORuGa9oPmnubi3oLl4ukjae7BGa2hKLOjoorgrfmcQTBhKSby4uN83S7rHYw6sLhSnN3H84iLepB6sgvcsCu71xumNZ/u/btYsCcYc9O5VMJ/5yrw1d/OOxAJzcX0VZr3q9XbiXCi10FT7VN/8rUXMVcz6Z/Ui7y7rudZ7g5X+S7vT5/KmCtPnMHFNi41jtqlMsd7aFb3o9PSgTGOrvyWDsQUbre5CKTSH2jdRxcGi9WnpLaJv3hHBSy9+ORctDL7q9WrmUNtWuXWB85AMMNHvMYIHPcMB4BUetN8kGQAAcDuSAQAA2JEMAADAjmQAAAB2JIPJ+NQbAODVpDms9dIFz7+ewXmIBQCAV8unsdbLHb7iSkfnIRkAAF6tbRpLk4H308wKkgEAALdTpzHzbMIqHFHQkQwAALhd5zGD1fqcAcmAWAAAeLtpZxMGf2hx/YhksBIOAAAvN/NzBttRBJIBAAAvNf+7CWaJgmQAAMDt5l/PoPuwAckAAIDbPWga+5hkQDgAALzXg+awz0gGAAC8GskAAADsSAYAAGBHMgAAADuSwadZ/vU8pvVSW0nc4PJvEWsCAF7hQbtykkHAnHR/Cn/m5vifXs3s0cwN5iJmOQDgRWZez+B4DcSvvZ7BGYJY4BWmc3N6JECp7KUHkgEAvNfMayD2XfpwQzLwKMlgOzBg/nmslh4tWLOjEfUYjt0RCwDg1Sb/bsLIUEgGJvGAgZkM6ppmuXlSIB1VnBUAAC+l7sfNswlrFRH4RaXp9AMG5o36tnIYwHz3H3xKsV4WAPBSnccMVudzBuZtEcmg1nQeQT9NsIbHDMRqRRf1MNSVBAA8ycyzCWZNHcmgpn/2sC73lp0VILYFxbQBAHiFsz5nQDIY1xQLinuDasoxf+/8gldYpARiAQC811nfTSAZjOtIBmvL5wfFrpVk0DRCAMCTzbyegVcoIhkc9R0wqN/EB40odZrGw8cLAOADPGg/TjI40pNB8Im/413BRwqCbyiIX2QgEwDAx3jQ3pxkAADA7UgGAABgRzIAAAA7kgEAANiRDAAAwI5k8GmW5UGP6fOxuQCgMPl6BkF5imRgMmeuZfnvv6p82W54c95y0DiSfam+Fp7pM9YCAGaZeQ1Er4KIZCDaJrIgGazOhJdWyLr+kwxaFx93Rp8kAwA4Out3EzqQDETeRFbMcPWENz4FfmQyWAkHAHCg7hDNswmrFRG4OvIs9SmDrSQ+lbD9WRzzD+a/uqaZAOLyYnHzvIP3p7nI30J73bc/6xvFbXOTplsGAL5N5zGD1fo8wfFPzibMYk1jXk33mME246YL1uGgKKxb8xYXC5sEn7rwqpknX6r6JAMA+K+zziaQDGa5IBlsdbwDDBOTQXEkoJWXDIKS4viBediAZAAAG5LB012TDLzDA2ahkgzMTusB6GcTgnXXk4GHZAAAm5nfTSAZnEFPBms2Sc8qnJIMbjlm4FQgFgDATton6tcz6L6YwUoyqJhHv73j4b/3Gp8KrI8lBIXmm/X6Pf1WGLS5WpOuV1O3+J/KrKt5Wy8eJAB8swftE0kGUzDPNWFzAUDhQbtFkgEAALcjGQAAgB3JAAAA7EgGAABgRzIAAAA7ksELDH7NDwAA3czrGWwlfZc0IBl4iAUAgMuccg1ErnQ0F8kAAHCZmb+bEJQoSAYekgEA4DLqlGOeTVidEEAymItkAAC4TOcxg9X/iYS+WLCSDBzEAgDAleafTSAZTEc4AABchmTwAiQDAMBlZn43wfxTRzLwkAwAAJeZeT2DrbxvKCQDD8kAAHCZB005JAMP10AEAFzmQfMNyQAAgNuRDAAAwI5kAAAAdiQDAACwIxkAAIAdyQDAKbYv1PDNGuBdJl/PwLvIgYJkcJll+e8/88/ze1+K72EuB31N9X2xc1uqu4XpBtfo2M70msVS8aYrSp6wbQGIZl4DMf5p5hTJ4BrHQGCWj7Qp1CzfRxYRob3rOYvfNXXFc+rEUU1fwXjTkQyA95r5uwkkg1fwdtEXJwPzz66uSQadHc1qMD1gcNIAAJxEfa2aJw5W50cTOJvwTNtZA/PcgVlS1/TORKTnI8zj5N4UcqxQ3/ZaMM9QeGMwuxMH31TfG5LX4OAaBf3G44nHuVobytsUg4UA7tV5zGDlcwavJR4zOP5pnoDwbme9S8cM4tmxqClOrnqbg5QezdvH8YyskddsPNq4I69TQgDweTib8HVGksH2Z3GE4MpkEDeYLu7NxMm4WwSTaDzleyV1U0Wzcf2g2bp8SqgiGQCvRjL4OoPJID1+kPV+ZzII7o3nraUSVF6tKVOcmL2arRvhgmQQbDqSAfBq+WuV7yZ8mEedTVhbpqJ08Y42xWTQpPVNf/fiQTv3JgNlPAAeS3q5cj2Dj7FYnxZcnE8R1iVp5ax3+z13XLjdVS8evIOv74oX99rp0LSaRdeDa7Ra283sKKgZb+R6KW+lgj/TcgA3etDLkmSAz1DMsjeO5F7HMJHWAfAcD3pZkgzwMYK3/gDwcA/ac5EMAAC4HckAAADsSAYAAGBHMgAAADuSAXKv+yTd6wYMAM/B9Qy+kTlvmlcvWP9+9yz+nn38afy4WjqXt37Un3AAAH24BiLW1bnK4W9J8u387XI3XgW9qWyQDVfLIRkAQJ+2vSfJ4FP5l0xWr3GrzMRXJoO+LgAA6q7TPHGw+mmAZPBM+qWRf+91r1gc1zxWjhcPGizuqq/FO3iGAgBQ6zxmsFofKTgePCAZPJmVALya+c/t6DWDMw7e4nWGSEeSlgMAAjPPJqyHTEAyeLJ7k0FdOVjc65FkAAAnmZwM4sIYyeAyz08Gq/VlBJIBAFzglO8m8K3Fh9OTwSrPx03JoGnx1pEEhQCA1MzrGYxczGAlGVzC/Lxh8AnE1TrTb76bTwvNP4s2zY8Wxoubf64kAwDo9aC9J8ngsa6fZZWTBeLiAIAmD9qBkgxwZB6HAACc7UG7XZIBAAC3IxkAAIAdyQAAAOxIBgAAYEcy+FJ8uA8AYJp5PQOvUEQyuBKxAABgOuUaiCtXR348kgEAwDTzdxNIBi9CMgAAmNTpwfvB5ZVk8E4kAwCAafSYwTExkAzeglgAAPB0JoP1kAlIBm9EOAAAmPqTQV1IMngRkgEAwDT63YT0wwc6ksGVSAYAAFPn9Qy86xZwPYO3IBkAAEwPmh5IBlfiGogAANOD5gaSAQAAtyMZAACAHckAAADsSAYAAGBHMgAA7JZ/0ryQVlv+LVsdsc2mmjjPgx4DkgEAnMSccevC7in8GAKOmaAoPJZ7heIAcJ7O6xl4hWvXNY5+kAxebflVl7R+PXL5q28k5pAucOzU3CZ1zWC71eVi72Zls6SorIxKH4PX4FJRCjvWXekobjZdo2XGc75uIVipnmazWHCcpOt/Sp1ggm+a+EkGTzB6DcT6NsngCx13ZMWN1ZqQ9AYHFxeXHdnnmq0dp5Cgo2A1vT/ToXa0OVJT6X1WYd+664WXtZn2Vdw4/t9HSQbdy8ZL/dw4/h8s4uUMXKxt0ys/kUAy+ELxvDLY4Mckg3r/Ls7NTZs3bl/csN3b36yczqMdi6e96x3pbQaFg/E3bmTw+alM7ROTgXIUoa5WfyKBZHAjddPXV0c2b9d/6kgGb7T8tRV6NYPbXgvF7WK6LcZgdqeshbdGfXt8PRl4vYwkA28r6U3pE2e8bNBa/FgHTwCx67Qj/fEN1ih+zscNFv+LT4a40O6uJRkEU3XcoNK+0hTJ4AlGjxmYnz/oGwrJ4L0G5xt9sq9v622a46nFiyjq/X5d7pUUd9W3vfrpgl5f6VTUsU3qB858NPVCcTCtbTZMrlmbrVvJfL55jYw8LVs/eJi+d08/YXCsc2xB/LwhyeAJOpPBesgEJAN07ODi3X3TZOnNbU37fbGm3lo99wRzXtPcnM6O3u1gmwRddG+ceNY0740L08EMdpSql/q2ZCC+9d+m/6AR/V5crz8ZeIUkgy90bzII7hV3qd7bwaZ4UbRWJIN4eGcng3RyvTEZNBWOJAN9bGn74jM2bsfMjnG/rfSPCChnE8TzC3UmMD+EmJ5uIBncKN/08XcT+NYi1q55elYyaJ1xxfGP6EgG9Ri8P9Ohdmwlvfd0AHo+O+PRHOwobbN7e4qjfUgySOs3JYOgWn0+gmTwENKmry9dEFzMoPuLiySDl/LeXseF21314uaC3l3x4l475zl2vWbrWw/bXKSokPaebhBvy6e9Nw0gWNDcCGmh2LXe0bFOxxp1byWxo7jNfIPIsSAoN+9KP2dQL2XWMRcJggUu86CtTzIAANE1yUCZ9YMSLzfEAyAW3O5BDwDJAO8SvHek99f1/pY2gQs86JlKMgAA4HYkAwAAsCMZAACAHckAAADsSAbfhY9BAQBindczaCoUkQyuQTIAAATySSK+BmJaqCMZXINkAAAItE0SJIMPQDIAAATUSaK+OrJ5Oy6MkQyuQTIAAARGjxl4v57QMRSSwWUIBwAAT2cyWA+ZgF9hfhdiAQAg0J8MzMLuWLCSDK5CMgAABEa/mzArFqwkg6uQDAAAgc7rGcQXM+i7pAHJ4BokAwBA4EGTBMngAlwDEQAQe9AkQTIAAOB2JAMAALAjGQAAgB3JAAAA7EgGAABgRzIAAAC7zusZNBWKSAZ3WZb//gMAYPQaiGmhjmRwL5IBAGAd/63FlV9h/hQkAwDAqieD+urI5u26po5kcA3v3IFZUlfm1AMAfLbRYwZeDuCYwTMVc7x3l1czWBwA8Bn6f4V5ywQkgxc5HgaIk8FWWVwcAPAZ+pNBR2GMZHCBYDr37uI4AQB8ldHvJogfPlCQDC7A2QQAQKzzegbedQu4nsHzBR8qPJYHJx04lQAAH+xBO3iSAQAAtyMZAACAHckAAADsSAYAAGBHMgAAADuSAQAA2JEMvtSyLAtfPQQAVDqvZ+AVbnd1DIVkcCViAQDANHoNxJXfWnwnkgEAwDT6W4vmbZLB85EMAAAmdXqor45c3zZzg45kcCWSAQDANHrM4JgYSAZvQSwAAHj6f4V5ywT1GQSSwfMRDgAApv5kUBdu31YgGTwfyQAAYBr9bgLfWnwpkgEAwNR5PYP4YgZ9hw1IBlciGQAATA+aHkgGV+IaiAAA04PmBpIBAAC3IxkAAIAdyQAAAOxIBgAAYEcyAADsln/SvJBWW/4tWx2xzaaaOM+DHgOSAQCcxJxx68LuKfwYAo6ZoCg8lnuF4gBwns7rGZiFx2sgcj2Db7P8qktavx65/NU3EnNIFzh2am6Tumaw3epysXezsllSVFZGpY/Ba3CpKIUd6650FDebrtEy4zlftxCsVE+zWSw4TtL1P6VOMME3TfwkgycYvQaiV9iBZPBexx1ZcWO1JiS9wcHFR3am3YopxBxY/adYM12jjjZHaiq9zyrsW3e98LI2076KG8f/+yjJoHvZeKmfG8f/g0W8nIGLdf5uAskAR/G8MtjgxySDev8uzs1NmzduX9yw3dvfrJzOox2Lp73rHeltBoWD8TduZPBprEztE5OBchShrlZ/IoFkcCN109cnDurb/KLSF1r+2gq9msFtr4XidjHdFmMwuxtZo749vp4MvF5GkoG3lfSm9IkzXjZoLX6sgyeA2HXakf74BmsUP+fjBov/xSdDXGh315IMgqk6blBpX2mKZPAEo8cMjjlg8IeYSQbvNTjf6JN9fVtv0xzPYAjwmi3+r8u9kuKu+rZXP13Q66s1lyjqB858NPVCcTCtbTZMrlmbrVvJfMp5jYw8M1s/eKi8d1c+ZFBnC/HzhiSDJ+hMBushE8z6uUWSwXt17ODi3X3TZOnNbSP70xHHWcecToqaa7YFxM0bL2hORUoX3ZsxnjXNe+PCdDCDHaXqpb4wGSinIbbp32wk7oJk8AT9yaAu5JjB17o3GQT3duxSl0pHC8X/6fDOTgbp5HpjMmgqHEkG+tjS9sVnbNyOmR3jflvpHxEQzybopwOKBs3yYClvnLhGvunjDxumHz7QkQzeq2OenpUMWmfcC3Qkg7UaqvdnukYdW0nvPR2Ans/OeDQHO0rb7N6e4mgfkgz0u4L6yrch6pMRJIOHkDZ9cOmCtKaOZPBS3tvruHC7q17cXNC7K17ca+c8x67XbH3rYZuLFBXS3tMN4m35tPemAQQLmhshLRS71js61ulYo+6tJHYUt5lvEDkWBOXxXXqDyrcQzUMLuMWDtj7JAABE1ySDekb3Pn5ofrSwLldGSyy43YMeAJIB3iV470jvr+v9LW0CF3jQM5VkAADA7UgGAABgRzIAAAA7kgEAANiRDL4LH4MCAMQ6r2fgFQblKZLBNUgGAIBAPkmkP7g86xeZSQbXIBkAAAJtk0ScDPoufbghGVyDZAAACKiTRH115Pr29tOLXB35yUgGAIDA6DGDYw4obrcOhWRwGcIBAMDTmQzWQw7gV5jfhVgAAAj0J4O6kGTwCiQDAEBg9LsJ6YcPdCSDa5AMAACBzusZTL+YwUoyuArJAAAQeNAkQTK4ANdABADEHjRJkAwAALgdyQAAAOxIBgAAYEcyAAAAO5IBAADYkQzwjV73BY3XDRjAe3Vez8As3Er6LmlAMni45a+RdqbXLJb6WdAbqllS1Oxe08GtFAyecADgGqPXQDQLudLRZ4jn1IkT1fQ5b2vQbLkorCsPruasxb1xAsCpRn9rcbVyAMngM3xkMkhLxgdzUjLoaw0AWqk7mvrEgXnbK1GQDK5hHusuSrxD4sHt+uB53UJ80D5t0Bvn8UZR01z9uHdvqbpTbwCDW0kcfFwIAN1GjxmYnz/oGwrJ4ALmpKXM/VuJOY3pbXrNpqMNOvI6FefRdHhB72ZH41upKRkAwFz9v8K8ZQKSwbvEM1maDMwGvdt9c7NXftLkOp4M0i5ax0kyAHCj/mTgFZIMXiGe27zypjlvpMQs15OBea9YcnEyCO7VNxQATJTvaFq/hkAyeLLWt93B4n1t6s3GC3Yng9bxXL+VvMETCwBcQ9rXBJcuMCv3DYVkcAHzrMGx3Kwf1zHvMjta/vI6CmoWJd6fW6G3Un0bxGt/4lYKBm+2GZQDQJ8H7VNIBrjM62bTYMCvWxcAD/egfQrJAACA25EMAADAjmQAAAB2JAMAALAjGQAAgB3J4Lm8L78BAHCezusZNBWKSAY1kgEA4GKj10BMC3UkgxrJAABwsc7fTSAZXINkAAC4mDrx1FdHDm5zNmEWkgEA4GKjxwz031NIkQxMhAMAwJX6f4V5SwCcTTgPsQAAcLH+ZFAXkgymIxkAAC42+t0E5cMHIpJBjWQAALhY5/UMvM8T8DmDuUgGAICLPWjiIRkUuAYiAOB6D5p4SAYAANyOZAAAAHYkAwAAsCMZAACAHcngMy3/kkc2qLD8W8x/4103jWpkFQAA3R60byUZBMxZ8KfQnL/r+t58L8793gCUpvTu6mSg5wyCAgBM0Xk9g6ZCEcnAk06idaE4zQ/Ou+ZbfDOUxNXEwsFwAwBQjF4DMS3UkQw8rckgmC+LN+LB+3IxGSjT87GXrYLZvn42IT2iAADoM/pbi2mhjmRg0mPBepiqvZpmMjAbnHvMQDnjENQMBkM4AIC51L1qfXXk+jbJ4AziG/rjDOpNnHEg6DhtP+tsQlzTqyOeOgEANBk9ZnBMDGahjmRQEw8YBCX1iQPx9Lz43n3W2YTjXcFKefElWBEAQJPOZLAepv+0UEQyqA0mg+4PEDSNR28nXZzTBABwu/5k0FEYIxkU9E8YNH0WYV2NIwrHu4IjAcXMnX4sIK5TN1sf4QjGT4wAgDOMfjch/cCBjmRQaA0BxZTsVd4qdMymI8cMlI8FpJ8h8JKEMgAAgELamdZXKZh+MYOVZPBX02GA4Ax9fLZeyQfKjN56b/DhBrNyPBJxhAAAxYP2pCSDo9YTBFuF4DMHwXwcRwTzo3/iaYKgZa9Zs6Y35r6DHwAAz4N2qSQDAABuRzIAAAA7kgEAANiRDAAAwI5kAAAAdiQDAACwa0gGytULRi5pQDKYbjnoW7C43TGAU8d5L2/Ay1/x4l61dFO0bq7uLfwlTwbxUetbfPqj2Y1Hs2nxUxd5MnU1+K3F1zk+R7tfG+v5+yxvnHqnN74aza637eZVMBfve4zEcp4MI71fv7hS3o1Hc3rXW+XBTp9DvQbi6k/8JIMHGn9S3rL7UEm9P40AAAe9SURBVMpHak4XdK2MimRQd9RUPlIzXpZkMKWjpvKRmvGylyWD7haeJh96OvGTDM6w/KXX3/706gS308K6o3hxc4qqy+s/vXWvV7Ou6d0u6tfbx2wzqBk3qKy7uXi66Za/j3K6QYKBeZvOHJJXntZM18gbXrxG5uC9NQoGb7YQLJ5ujXgTBX15281b93h7xuMMxh/XTNeoKPTW2rsrqOnd9ransniwNVaLPs5gQ5ktPwrJ4Lm25+uaPZnqJ3TwtPZumy/pojV98bpOsHgwAHHwSk3lZd8qXiNxSE2bztvs4tql29Bs80ueDObD0beVgjEEw9AfzXgT8WiuzsPRupW6x+kVvkUy9DQNrCSD05gvYK/mUVC/9RXovbqKV7vSXdqjUkHsvXU31y3eIaY1g92QOJcoIwnaLJ428Tg//smgb+QnPJp1FzyaZs3BR9McobKVxAfumfKhb183IBlcLHgBmzXjkrpceQXWvaevt2AY47sPsXf9XrML7/XfNGBl3fW5ZBuY0nvHw6GM8+OfDLPmkmsezbSLeJw8muKj6bWfln94MtiQDC7Wlwz0p3tHMpg4FXUPqbtmx942NSsZNC2e9t4xlyhPm49/MpxRqPzZukarHCx4NC8oNMfpFb6FOnTzsAHXMzjP9srf/k/DgbmzCAqPXRQ1g96Vxc1q3pDMasUwxGZbV3Oc16ZSaP7prWNQYm4Bb3t644//XL7gyWD+aS7uLWguni6S9h6skbmJ4jaPA4tX03s4zDWqu/MW1x8jvWa9oPmnubi34EmruW35h3vQEEkGgKfYE904Eozj0fxmr3jEHzREkkEqSLL4eDzon4RHE0/2oOclyQAAgNuRDAAAwI5kAAAAdiQDAACwIxkAAIBdQzIQL13QdzGDlWQAAMADtF3p6Pind5tkAADAe0nJ4GeyV5JB/aeOZAAAwO3yZKD/CrP5p45kAADA7UgGAABglyQD8bMF3iJNSAYAANxOOmZg/tCiebv+U0cyAADgdp3fWiQZAADwkdq+tVh/QVG8yIGCZAAAwO24BiIAANiRDAAAwI5kAAAAdiQDAACwIxkAAIAdyeATLP+W4s/tn1de/0ur9Q1GvKuvwYmd9o0NAD7Pg/aGJIOAOW8V03l9u04G6Y3WASgxojuL6LkkrjC4OAB8lc4rHa1cz+BCaSxY5WSgT71B+02d6tXivurxB12IOWMkiwDAp2q70tHxz/p2cGFEBcnAoyQDszyY5FrfRjcdMzCb2v4//pk2FY9fr6mso3gXAHw2aff3M82TDG6hvFn3pttikaYj9nOPGejdBTeCXqZP/yQDAF9r/q8wB4UxkoFJfB8cHCHXm22qsLYkg7SaOf6gZpGE9EjU1ykAfI9TkgGfM5hFPzwev8MuaorRQXmjrxz8L+Zy8/CGeMzAW0fx3f9IpwDwJZLdn5IG+K3F83QkgzWbLPV322LXejvK4nOTgXiKhGQAABvpmIH5Q4vp7VYkg4IeC9aW+b6oIx4GqCsHNc2j9GnNehFzXeJDDvHm4mwCAKQadn9Nn0DsQDIotCaDeMovaqZnE/QhpXcVFeL1it++x3EhHVJ6zCBuEAC+gbr7Mw8beCV9lzQgGRw1xYI1m0eDRgZndLEd88hEXSIeV1B6V844jAQdAPhUD9r9kQyOWpOBV+F4IkA8sG822zSR152mzQ4ejUjjTvcBGAD4Ng/a/ZEMAAC4HckAAADsSAYAAGBHMgAAADuSAQAA2JEMcLpledDTTPG6AQPARJ1XOlqt6xl4hSKSwdHyq7jd0Y7eV3cvygC8xsXe42rpsFtXjXAA4Gu1Xeno+Gd9m19hnqtIBqd2VPw/vfH6dkfvaVP6SNJykgGAryXt/n6meX6F+WKXJYOtu7PbjA8JNLV2djLo6wIAPkC+72v9FWbOJsziJYP6iLpZMzjwnh6Qr9vxOorjS50M9NMB3mqmW8OrHGwicUheIQB8kvnJICiMkQwK20y2HiakYlI83lZmMm9xvWbdUT37ntR7sSmUxYO44y2blgPAZ0v2fd2/vEwyGGcmg+2u+q1z0Ij5Z3cyCLq4IBmkY/Bq6msUlwPAZ5OOGZg/q2jejgtjJIOClwxG3vh+STJYnWMbykjScgD4bA37Pr6bcLHWswlBI8oiZyQDvZ2mZNC0eOtIgkIA+Abq7s88bMD1DM6zveXd/j9OkEdFSdFCUF535xUGHZl/Fo2YDeq9xx2Zq9k6znjYSjkAfIwH7eZIBp/q+tl0yQ4J6IvrdwHAZ3jQbo5kgInM4xAAgNSD9pskAwAAbkcyAAAAO5IBAADYkQwAAMCOZDAHH3YDAHyGzisdreGlC77zegbVF+LX6VHhjDYBADhqu9LR8U/zdl1T92HJYF1PmcVJBgCAU0nzzM9Mr/+6Esngt+SMXua3CQDARvpFpeKGd9usqfvIZLD9KwrX6tRAXdMsPC5bVSY1AABGkQxmqj9q4N2uE0B9Oy4kBgAAzpBML31nEL4zGcRnE7zbW4l5gGGtDg9sxwwAADiDdMzA/KHF+rZZU/flycBp07jBNxQAAOfp/NZifISAZPBbkt8O7uVsAgDgem3fWiwCgXl4oPuwwUcmA+8TiMqHDdfqLMOxDp9ABACc4UFzyauTwROugXj7AAAAH+D/AV9C77oQpA+oAAAAAElFTkSuQmCC" alt="" />
在这个case中,如果能移动,则根据ft时间计算移动长度,再累加到马里奥的x坐标,最后设置新的位置,这样完成了位置的移动
如果方向发生变化,那么马里奥的状态也要变,同时马里奥的方向也要变,这个是调用MarioTurn函数实现的。
cocos2d-x游戏开发系列教程-超级玛丽07-CMGameMap(四)-马里奥平移的更多相关文章
-
cocos2d-x游戏开发系列教程-超级玛丽10-怪物与马里奥冲突检测
在超级玛丽游戏中,马里奥在移动,怪物也在移动,当他们遇见时,需要判断是马里奥身亡还是怪物身亡. 这个判断的代码在怪物类的检测函数实现中. 比如蘑菇怪的冲突检测函数: bool CMMonsterMus ...
-
cocos2d-x游戏开发系列教程-超级玛丽07-CMGameMap(三)-按键处理
在地图初始化好了之后,就开始移动马里奥吧,我在windows下,是使用键盘来移动马里奥的 w是跳,d是前进,a是后退,那么在程序里是怎么来获取这个按键的呢? 普通的windows程序,在按键之后,会有 ...
-
cocos2d-x游戏开发系列教程-超级玛丽01-前言
前言 上次用象棋演示了cocos2dx的基本用法,但是对cocos2dx并没有作深入的讨论,这次以超级马里奥的源代码为线索,我们一起来学习超级马里奥的实现,并以一些篇幅来详细讲述遇到的具体问题和具体的 ...
-
cocos2d-x游戏开发系列教程-超级玛丽07-CMGameMap
背景 在上一篇博客中,我们提到CMGameScene,但是CMGameScene只是个框架,实际担任游戏逻辑的是CMGameMap类,这个博文就来了解下CMGameMap 头文件 class CMGa ...
-
cocos2d-x游戏开发系列教程-超级玛丽06-CMGameScene
背景 在CMMenuScene中,当用户点击开始游戏时,导演让场景进入到CMGameScene 头文件 class CMGameScene : public cocos2d::CCLayer,publ ...
-
cocos2d-x游戏开发系列教程-超级玛丽08-消息机制
在超级玛丽游戏里,地图类CMGameMap负责所有的程序逻辑,它包含了背景地图,包含了游戏元素精灵,当游戏中的精灵之间发生碰撞时,比如马里奥撞上砖头这种事情发生时,马里奥对象本身不知道怎么处理这个逻辑 ...
-
cocos2d-x游戏开发系列教程-超级玛丽05-CMMenuScene
代码下载链接 http://download.csdn.net/detail/yincheng01/6864893 解压密码:c.itcast.cn 背景 上一篇博文提到appDelegate,在该类 ...
-
cocos2d-x游戏开发系列教程-超级玛丽09-怪物激活与移动
在游戏中,很多怪物本身是会移动的,这里主要有蘑菇怪,乌龟等. 说起怪物的移动,首先在游戏里先要考虑怪物的抽象和设计. 在CMMonster.h中,有个类CMMonsterBasic,这个类抽象了所有的 ...
-
cocos2d-x游戏开发系列教程-超级玛丽07-CMGameMap(五)-地图卷动
马里奥在平移的过程中,涉及到地图的卷动问题. 在这个游戏里,地图比窗口大,窗口只是显示了地图的一部分,因此马里奥在移动的时候,移动到一定位置之后要卷动地图,否则马里奥移动到窗口右边之后......那结 ...
-
cocos2d-x游戏开发系列教程-超级玛丽04-AppDelegate
代码下载链接 http://download.csdn.net/detail/yincheng01/6864893 解压密码:c.itcast.cn 背景 上一篇博文提到在CCApplication: ...
随机推荐
-
把《c++ primer》读薄(3-1 标准库string类型初探)
督促读书,总结精华,提炼笔记,抛砖引玉,有不合适的地方,欢迎留言指正. 问题1:养成一个好习惯,在头文件中只定义确实需要的东西 using namespace std; //建议需要什么再using声 ...
-
HTML的16个全局属性
前面的话 在HTML中,属性能表达相当丰富的语义,而且属性也会额外提供很多实用的功能,HTML共支持16个常见的全局属性. HTML原有属性 accesskey 作用:浏览器用来创建激活或聚焦元素的快 ...
-
SQL Server With 递归 日期 循环
要实现的效果:查询从Date From 到 To 之间的 所有日期: 示例代码如下: DECLARE @DATE_FROM DATETIME = N'2016-05-16';--N'2015-05-1 ...
-
curl用法
简介 curl是一个和服务器交互信息(发送和获取信息)的命令行工具,支持DICT, FILE, FTP, FTPS, GOPHER, HTTP, HTTPS, IMAP, IMAPS, LDAP, L ...
-
Ibatis.net防Sql注入
sql注入是一个古老的话题了,但经常会被我们忽略.尤其是使用了ibatis.net之后. Ibatis.net框架对sql注入问题已经做了很好的防护,但经常由于开发人员使用不当,会造成sql的注入隐患 ...
-
Tomcat安全
一.版本安全 升级当前的tomcat版本为最新稳定版本.故名思议,最新稳定版本就要兼顾最新和稳定这两个概念.一个稳定的版本,是需要时间沉淀的,而最新又是相对于稳定版而言的最新.因此我们一般会选择当前大 ...
-
cocos2d-x3.x Vector
auto sp0 = Sprite::create(); sp0->setTag(); auto sp1 = Sprite::create(); sp1->setTag(); //这里使用 ...
-
framework7 入门(数据获取和传递)
数据获取 framework7自带request方法 , var app = new Framework7({...});app.request(parameters) 或者 Framework7.r ...
-
Django初印象之视图(view)
一.view的初印象 一个视图函数(类),简称视图.我们发起web请求时,返回的web响应.[大家约定成俗将视图放置在项目(project)或应用程序(app)目录中的名为views.py的文件中.] ...
-
Java-JUC(一):volatile引入
问题背景: volatile是为了解决内存可见性而生的,什么是内存不可见性呢? 以下边的代码为例: package com.dx.juc; public class VoltileTest { pub ...