引入
rabbitmq 是一个由 erlang 语言开发的 amqp 的开源实现。
rabbitmq是一款基于amqp协议的消息中间件,它能够在应用之间提供可靠的消息传输。在易用性,扩展性,高可用性上表现优秀。使用消息中间件利于应用之间的解耦,生产者(客户端)无需知道消费者(服务端)的存在。而且两端可以使用不同的语言编写,大大提供了灵活性。
安装
1
2
3
4
5
6
7
8
9
10
11
|
# 安装配置epel源
rpm - ivh http: / / dl.fedoraproject.org / pub / epel / 6 / i386 / epel - release - 6 - 8.noarch .rpm
# 安装erlang
yum - y install erlang
# 安装rabbitmq
yum - y install rabbitmq - server
# 启动/停止
service rabbitmq - server start / stop
|
rabbitmq工作模型
简单模式
生产者
1
2
3
4
5
6
7
8
9
10
11
12
13
|
import pika
connection = pika.blockingconnection(pika.connectionparameters( host = 'localhost' ))
channel = connection.channel()
channel.queue_declare(queue = 'hello' )
channel.basic_publish(exchange = '',
routing_key = 'hello' ,
body = 'hello world!' )
print ( " [x] sent 'hello world!'" )
connection.close()
|
消费者
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
connection = pika.blockingconnection(pika.connectionparameters(host = 'localhost' ))
channel = connection.channel()
channel.queue_declare(queue = 'hello' )
def callback(ch, method, properties, body):
print ( " [x] received %r" % body)
channel.basic_consume( callback,
queue = 'hello' ,
no_ack = true)
print ( ' [*] waiting for messages. to exit press ctrl+c' )
channel.start_consuming()
|
相关参数
1,no-ack = false
如果消费者遇到情况(its channel is closed, connection is closed, or tcp connection is lost)挂掉了,那么,rabbitmq会重新将该任务添加到队列中。
- 回调函数中的 ch.basic_ack(delivery_tag=method.delivery_tag)
- basic_comsume中的no_ack=false
接收消息端应该这么写:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import pika
connection = pika.blockingconnection(pika.connectionparameters(
host = '10.211.55.4' ))
channel = connection.channel()
channel.queue_declare(queue = 'hello' )
def callback(ch, method, properties, body):
print ( " [x] received %r" % body)
import time
time.sleep( 10 )
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag)
channel.basic_consume(callback,
queue = 'hello' ,
no_ack = false)
print ( ' [*] waiting for messages. to exit press ctrl+c' )
channel.start_consuming()
|
2,durable :消息不丢失
生产者
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import pika
connection = pika.blockingconnection(pika.connectionparameters(host = '10.211.55.4' ))
channel = connection.channel()
# make message persistent
channel.queue_declare(queue = 'hello' , durable = true)
channel.basic_publish(exchange = '',
routing_key = 'hello' ,
body = 'hello world!' ,
properties = pika.basicproperties(
delivery_mode = 2 , # make message persistent
))
print ( " [x] sent 'hello world!'" )
connection.close()
|
3,消息获取顺序
默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。
channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
import pika
connection = pika.blockingconnection(pika.connectionparameters(host = '10.211.55.4' ))
channel = connection.channel()
# make message persistent
channel.queue_declare(queue = 'hello' )
def callback(ch, method, properties, body):
print ( " [x] received %r" % body)
import time
time.sleep( 10 )
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag)
channel.basic_qos(prefetch_count = 1 )
channel.basic_consume(callback,
queue = 'hello' ,
no_ack = false)
print ( ' [*] waiting for messages. to exit press ctrl+c' )
channel.start_consuming()
|
exchange模型
1,发布订阅
发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,rabbitmq实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。
exchange type = fanout
生产者
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import pika
import sys
connection = pika.blockingconnection(pika.connectionparameters(
host = 'localhost' ))
channel = connection.channel()
channel.exchange_declare(exchange = 'logs' ,
type = 'fanout' )
message = ' ' .join(sys.argv[ 1 :]) or "info: hello world!"
channel.basic_publish(exchange = 'logs' ,
routing_key = '',
body = message)
print ( " [x] sent %r" % message)
connection.close()
|
消费者
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
import pika
connection = pika.blockingconnection(pika.connectionparameters(
host = 'localhost' ))
channel = connection.channel()
channel.exchange_declare(exchange = 'logs' ,
type = 'fanout' )
result = channel.queue_declare(exclusive = true)
queue_name = result.method.queue
channel.queue_bind(exchange = 'logs' ,
queue = queue_name)
print ( ' [*] waiting for logs. to exit press ctrl+c' )
def callback(ch, method, properties, body):
print ( " [x] %r" % body)
channel.basic_consume(callback,
queue = queue_name,
no_ack = true)
channel.start_consuming()
|
2,关键字发送
之前事例,发送消息时明确指定某个队列并向其中发送消息,rabbitmq还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。
exchange type = direct
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
import pika
import sys
connection = pika.blockingconnection(pika.connectionparameters(
host = 'localhost' ))
channel = connection.channel()
channel.exchange_declare(exchange = 'direct_logs' ,
type = 'direct' )
result = channel.queue_declare(exclusive = true)
queue_name = result.method.queue
severities = sys.argv[ 1 :]
if not severities:
sys.stderr.write( "usage: %s [info] [warning] [error]\n" % sys.argv[ 0 ])
sys.exit( 1 )
for severity in severities:
channel.queue_bind(exchange = 'direct_logs' ,
queue = queue_name,
routing_key = severity)
print ( ' [*] waiting for logs. to exit press ctrl+c' )
def callback(ch, method, properties, body):
print ( " [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
queue = queue_name,
no_ack = true)
channel.start_consuming()
|
3,模糊匹配
exchange type = topic
发送者路由值 队列中
old.boy.python old.* -- 不匹配
old.boy.python old.# -- 匹配
在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。
- # 表示可以匹配 0 个 或 多个 单词
- * 表示只能匹配 一个 单词
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
import pika
import sys
connection = pika.blockingconnection(pika.connectionparameters(
host = 'localhost' ))
channel = connection.channel()
channel.exchange_declare(exchange = 'topic_logs' ,
type = 'topic' )
result = channel.queue_declare(exclusive = true)
queue_name = result.method.queue
binding_keys = sys.argv[ 1 :]
if not binding_keys:
sys.stderr.write( "usage: %s [binding_key]...\n" % sys.argv[ 0 ])
sys.exit( 1 )
for binding_key in binding_keys:
channel.queue_bind(exchange = 'topic_logs' ,
queue = queue_name,
routing_key = binding_key)
print ( ' [*] waiting for logs. to exit press ctrl+c' )
def callback(ch, method, properties, body):
print ( " [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
queue = queue_name,
no_ack = true)
channel.start_consuming()
|
基于rabbitmq的rpc
callback queue 回调队列
一个客户端向服务器发送请求,服务器端处理请求后,将其处理结果保存在一个存储体中。而客户端为了获得处理结果,那么客户在向服务器发送请求时,同时发送一个回调队列地址 reply_to 。
correlation id 关联标识
一个客户端可能会发送多个请求给服务器,当服务器处理完后,客户端无法辨别在回调队列中的响应具体和那个请求时对应的。为了处理这种情况,客户端在发送每个请求时,同时会附带一个独有 correlation_id 属性,这样客户端在回调队列中根据 correlation_id 字段的值就可以分辨此响应属于哪个请求。
客户端发送请求:
某个应用将请求信息交给客户端,然后客户端发送rpc请求,在发送rpc请求到rpc请求队列时,客户端至少发送带有reply_to以及correlation_id两个属性的信息
服务端工作流:
等待接受客户端发来rpc请求,当请求出现的时候,服务器从rpc请求队列中取出请求,然后处理后,将响应发送到reply_to指定的回调队列中
客户端接受处理结果:
客户端等待回调队列中出现响应,当响应出现时,它会根据响应中correlation_id字段的值,将其返回给对应的应用
服务者
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
import pika
# 建立连接,服务器地址为localhost,可指定ip地址
connection = pika.blockingconnection(pika.connectionparameters(
host = 'localhost' ))
# 建立会话
channel = connection.channel()
# 声明rpc请求队列
channel.queue_declare(queue = 'rpc_queue' )
# 数据处理方法
def fib(n):
if n = = 0 :
return 0
elif n = = 1 :
return 1
else :
return fib(n - 1 ) + fib(n - 2 )
# 对rpc请求队列中的请求进行处理
def on_request(ch, method, props, body):
n = int (body)
print ( " [.] fib(%s)" % n)
# 调用数据处理方法
response = fib(n)
# 将处理结果(响应)发送到回调队列
ch.basic_publish(exchange = '',
routing_key = props.reply_to,
properties = pika.basicproperties(correlation_id = \
props.correlation_id),
body = str (response))
ch.basic_ack(delivery_tag = method.delivery_tag)
# 负载均衡,同一时刻发送给该服务器的请求不超过一个
channel.basic_qos(prefetch_count = 1 )
channel.basic_consume(on_request, queue = 'rpc_queue' )
print ( " [x] awaiting rpc requests" )
channel.start_consuming()
|
客户端
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
import pika
import uuid
class fibonaccirpcclient( object ):
def __init__( self ):
"""
客户端启动时,创建回调队列,会开启会话用于发送rpc请求以及接受响应
"""
# 建立连接,指定服务器的ip地址
self .connection = pika.blockingconnection(pika.connectionparameters(
host = 'localhost' ))
# 建立一个会话,每个channel代表一个会话任务
self .channel = self .connection.channel()
# 声明回调队列,再次声明的原因是,服务器和客户端可能先后开启,该声明是幂等的,多次声明,但只生效一次
result = self .channel.queue_declare(exclusive = true)
# 将次队列指定为当前客户端的回调队列
self .callback_queue = result.method.queue
# 客户端订阅回调队列,当回调队列中有响应时,调用`on_response`方法对响应进行处理;
self .channel.basic_consume( self .on_response, no_ack = true,
queue = self .callback_queue)
# 对回调队列中的响应进行处理的函数
def on_response( self , ch, method, props, body):
if self .corr_id = = props.correlation_id:
self .response = body
# 发出rpc请求
def call( self , n):
# 初始化 response
self .response = none
#生成correlation_id
self .corr_id = str (uuid.uuid4())
# 发送rpc请求内容到rpc请求队列`rpc_queue`,同时发送的还有`reply_to`和`correlation_id`
self .channel.basic_publish(exchange = '',
routing_key = 'rpc_queue' ,
properties = pika.basicproperties(
reply_to = self .callback_queue,
correlation_id = self .corr_id,
),
body = str (n))
while self .response is none:
self .connection.process_data_events()
return int ( self .response)
# 建立客户端
fibonacci_rpc = fibonaccirpcclient()
# 发送rpc请求
print ( " [x] requesting fib(30)" )
response = fibonacci_rpc.call( 30 )
print ( " [.] got %r" % response)
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://www.cnblogs.com/peng104/p/10555541.html