Python操作rabbitMQ的示例代码

时间:2022-09-15 10:45:08

引入

rabbitmq 是一个由 erlang 语言开发的 amqp 的开源实现。

rabbitmq是一款基于amqp协议的消息中间件,它能够在应用之间提供可靠的消息传输。在易用性,扩展性,高可用性上表现优秀。使用消息中间件利于应用之间的解耦,生产者(客户端)无需知道消费者(服务端)的存在。而且两端可以使用不同的语言编写,大大提供了灵活性。

Python操作rabbitMQ的示例代码

中文文档

安装

?
1
2
3
4
5
6
7
8
9
10
11
# 安装配置epel源
  rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
 
# 安装erlang
  yum -y install erlang
 
# 安装rabbitmq
  yum -y install rabbitmq-server
 
# 启动/停止
  service rabbitmq-server start/stop

rabbitmq工作模型

简单模式

生产者

?
1
2
3
4
5
6
7
8
9
10
11
12
13
import pika
connection = pika.blockingconnection(pika.connectionparameters( host='localhost'))
 
channel = connection.channel()
 
channel.queue_declare(queue='hello')
 
channel.basic_publish(exchange='',
           routing_key='hello',
           body='hello world!')
 
print(" [x] sent 'hello world!'")
connection.close()

消费者

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
connection = pika.blockingconnection(pika.connectionparameters(host='localhost'))
channel = connection.channel()
 
channel.queue_declare(queue='hello')
 
def callback(ch, method, properties, body):
  print(" [x] received %r" % body)
 
channel.basic_consume( callback,
            queue='hello',
            no_ack=true)
 
print(' [*] waiting for messages. to exit press ctrl+c')
channel.start_consuming()

相关参数

1,no-ack = false

如果消费者遇到情况(its channel is closed, connection is closed, or tcp connection is lost)挂掉了,那么,rabbitmq会重新将该任务添加到队列中。

  • 回调函数中的 ch.basic_ack(delivery_tag=method.delivery_tag)
  • basic_comsume中的no_ack=false

接收消息端应该这么写:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import pika
 
connection = pika.blockingconnection(pika.connectionparameters(
    host='10.211.55.4'))
channel = connection.channel()
 
channel.queue_declare(queue='hello')
 
def callback(ch, method, properties, body):
  print(" [x] received %r" % body)
  import time
  time.sleep(10)
  print 'ok'
  ch.basic_ack(delivery_tag = method.delivery_tag)
 
channel.basic_consume(callback,
           queue='hello',
           no_ack=false)
 
print(' [*] waiting for messages. to exit press ctrl+c')
channel.start_consuming()

2,durable :消息不丢失

生产者

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import pika
 
connection = pika.blockingconnection(pika.connectionparameters(host='10.211.55.4'))
channel = connection.channel()
 
# make message persistent
channel.queue_declare(queue='hello', durable=true)
 
channel.basic_publish(exchange='',
           routing_key='hello',
           body='hello world!',
           properties=pika.basicproperties(
             delivery_mode=2, # make message persistent
           ))
print(" [x] sent 'hello world!'")
connection.close()

3,消息获取顺序

默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。

channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import pika
 
connection = pika.blockingconnection(pika.connectionparameters(host='10.211.55.4'))
channel = connection.channel()
 
# make message persistent
channel.queue_declare(queue='hello')
 
 
def callback(ch, method, properties, body):
  print(" [x] received %r" % body)
  import time
  time.sleep(10)
  print 'ok'
  ch.basic_ack(delivery_tag = method.delivery_tag)
 
channel.basic_qos(prefetch_count=1)
 
channel.basic_consume(callback,
           queue='hello',
           no_ack=false)
 
print(' [*] waiting for messages. to exit press ctrl+c')
channel.start_consuming()

exchange模型

1,发布订阅

Python操作rabbitMQ的示例代码

发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,rabbitmq实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

exchange type = fanout

生产者

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import pika
import sys
 
connection = pika.blockingconnection(pika.connectionparameters(
    host='localhost'))
channel = connection.channel()
 
channel.exchange_declare(exchange='logs',
             type='fanout')
 
message = ' '.join(sys.argv[1:]) or "info: hello world!"
channel.basic_publish(exchange='logs',
           routing_key='',
           body=message)
print(" [x] sent %r" % message)
connection.close()

消费者

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import pika
 
connection = pika.blockingconnection(pika.connectionparameters(
    host='localhost'))
channel = connection.channel()
 
channel.exchange_declare(exchange='logs',
             type='fanout')
 
result = channel.queue_declare(exclusive=true)
queue_name = result.method.queue
 
channel.queue_bind(exchange='logs',
          queue=queue_name)
 
print(' [*] waiting for logs. to exit press ctrl+c')
 
def callback(ch, method, properties, body):
  print(" [x] %r" % body)
 
channel.basic_consume(callback,
           queue=queue_name,
           no_ack=true)
 
channel.start_consuming()

2,关键字发送

Python操作rabbitMQ的示例代码

之前事例,发送消息时明确指定某个队列并向其中发送消息,rabbitmq还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

exchange type = direct

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pika
import sys
 
connection = pika.blockingconnection(pika.connectionparameters(
    host='localhost'))
channel = connection.channel()
 
channel.exchange_declare(exchange='direct_logs',
             type='direct')
 
result = channel.queue_declare(exclusive=true)
queue_name = result.method.queue
 
severities = sys.argv[1:]
if not severities:
  sys.stderr.write("usage: %s [info] [warning] [error]\n" % sys.argv[0])
  sys.exit(1)
 
for severity in severities:
  channel.queue_bind(exchange='direct_logs',
            queue=queue_name,
            routing_key=severity)
 
print(' [*] waiting for logs. to exit press ctrl+c')
 
def callback(ch, method, properties, body):
  print(" [x] %r:%r" % (method.routing_key, body))
 
channel.basic_consume(callback,
           queue=queue_name,
           no_ack=true)
 
channel.start_consuming()

3,模糊匹配

Python操作rabbitMQ的示例代码

exchange type = topic

发送者路由值 队列中
old.boy.python old.* -- 不匹配
old.boy.python old.# -- 匹配

在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。

  • # 表示可以匹配 0 个 或 多个 单词
  • *  表示只能匹配 一个 单词
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pika
import sys
 
connection = pika.blockingconnection(pika.connectionparameters(
    host='localhost'))
channel = connection.channel()
 
channel.exchange_declare(exchange='topic_logs',
             type='topic')
 
result = channel.queue_declare(exclusive=true)
queue_name = result.method.queue
 
binding_keys = sys.argv[1:]
if not binding_keys:
  sys.stderr.write("usage: %s [binding_key]...\n" % sys.argv[0])
  sys.exit(1)
 
for binding_key in binding_keys:
  channel.queue_bind(exchange='topic_logs',
            queue=queue_name,
            routing_key=binding_key)
 
print(' [*] waiting for logs. to exit press ctrl+c')
 
def callback(ch, method, properties, body):
  print(" [x] %r:%r" % (method.routing_key, body))
 
channel.basic_consume(callback,
           queue=queue_name,
           no_ack=true)
 
channel.start_consuming()

基于rabbitmq的rpc

 callback queue 回调队列

一个客户端向服务器发送请求,服务器端处理请求后,将其处理结果保存在一个存储体中。而客户端为了获得处理结果,那么客户在向服务器发送请求时,同时发送一个回调队列地址 reply_to

correlation id 关联标识

一个客户端可能会发送多个请求给服务器,当服务器处理完后,客户端无法辨别在回调队列中的响应具体和那个请求时对应的。为了处理这种情况,客户端在发送每个请求时,同时会附带一个独有 correlation_id 属性,这样客户端在回调队列中根据 correlation_id 字段的值就可以分辨此响应属于哪个请求。

客户端发送请求:

某个应用将请求信息交给客户端,然后客户端发送rpc请求,在发送rpc请求到rpc请求队列时,客户端至少发送带有reply_to以及correlation_id两个属性的信息

服务端工作流:

等待接受客户端发来rpc请求,当请求出现的时候,服务器从rpc请求队列中取出请求,然后处理后,将响应发送到reply_to指定的回调队列中

客户端接受处理结果:

客户端等待回调队列中出现响应,当响应出现时,它会根据响应中correlation_id字段的值,将其返回给对应的应用

服务者

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pika
 
# 建立连接,服务器地址为localhost,可指定ip地址
connection = pika.blockingconnection(pika.connectionparameters(
    host='localhost'))
 
# 建立会话
channel = connection.channel()
 
# 声明rpc请求队列
channel.queue_declare(queue='rpc_queue')
 
# 数据处理方法
def fib(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib(n-1) + fib(n-2)
 
# 对rpc请求队列中的请求进行处理
def on_request(ch, method, props, body):
  n = int(body)
 
  print(" [.] fib(%s)" % n)
 
  # 调用数据处理方法
  response = fib(n)
 
  # 将处理结果(响应)发送到回调队列
  ch.basic_publish(exchange='',
           routing_key=props.reply_to,
           properties=pika.basicproperties(correlation_id = \
                             props.correlation_id),
           body=str(response))
  ch.basic_ack(delivery_tag = method.delivery_tag)
 
# 负载均衡,同一时刻发送给该服务器的请求不超过一个
channel.basic_qos(prefetch_count=1)
 
channel.basic_consume(on_request, queue='rpc_queue')
 
print(" [x] awaiting rpc requests")
channel.start_consuming()

客户端

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import pika
import uuid
 
class fibonaccirpcclient(object):
  def __init__(self):
    """
    客户端启动时,创建回调队列,会开启会话用于发送rpc请求以及接受响应
    """
    # 建立连接,指定服务器的ip地址
    self.connection = pika.blockingconnection(pika.connectionparameters(
        host='localhost'))
        
    # 建立一个会话,每个channel代表一个会话任务
    self.channel = self.connection.channel()
    
    # 声明回调队列,再次声明的原因是,服务器和客户端可能先后开启,该声明是幂等的,多次声明,但只生效一次
    result = self.channel.queue_declare(exclusive=true)
    # 将次队列指定为当前客户端的回调队列
    self.callback_queue = result.method.queue
    
    # 客户端订阅回调队列,当回调队列中有响应时,调用`on_response`方法对响应进行处理;
    self.channel.basic_consume(self.on_response, no_ack=true,
                  queue=self.callback_queue)
 
 
  # 对回调队列中的响应进行处理的函数
  def on_response(self, ch, method, props, body):
    if self.corr_id == props.correlation_id:
      self.response = body
 
 
  # 发出rpc请求
  def call(self, n):
  
    # 初始化 response
    self.response = none
    
    #生成correlation_id
    self.corr_id = str(uuid.uuid4())
    
    # 发送rpc请求内容到rpc请求队列`rpc_queue`,同时发送的还有`reply_to`和`correlation_id`
    self.channel.basic_publish(exchange='',
                  routing_key='rpc_queue',
                  properties=pika.basicproperties(
                     reply_to = self.callback_queue,
                     correlation_id = self.corr_id,
                     ),
                  body=str(n))
                  
    
    while self.response is none:
      self.connection.process_data_events()
    return int(self.response)
 
# 建立客户端
fibonacci_rpc = fibonaccirpcclient()
 
# 发送rpc请求
print(" [x] requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] got %r" % response)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:http://www.cnblogs.com/peng104/p/10555541.html