1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
from sklearn.linear_model import Perceptron
import argparse #一个好用的参数传递模型
import numpy as np
from sklearn.datasets import load_iris #数据集
from sklearn.model_selection import train_test_split #训练集和测试集分割
from loguru import logger #日志输出,不清楚用法
#python is also oop
class PerceptronToby():
"""
n_epoch:迭代次数
learning_rate:学习率
loss_tolerance:损失阈值,即损失函数达到极小值的变化量
"""
def __init__( self , n_epoch = 500 , learning_rate = 0.1 , loss_tolerance = 0.01 ):
self ._n_epoch = n_epoch
self ._lr = learning_rate
self ._loss_tolerance = loss_tolerance
"""训练模型,即找到每个数据最合适的权重以得到最小的损失函数"""
def fit( self , X, y):
# X:训练集,即数据集,每一行是样本,每一列是数据或标签,一样本包括一数据和一标签
# y:标签,即1或-1
n_sample, n_feature = X.shape #剥离矩阵的方法真帅
#均匀初始化参数
rnd_val = 1 / np.sqrt(n_feature)
rng = np.random.default_rng()
self ._w = rng.uniform( - rnd_val,rnd_val,size = n_feature)
#偏置初始化为0
self ._b = 0
#开始训练了,迭代n_epoch次
num_epoch = 0 #记录迭代次数
prev_loss = 0 #前损失值
while True :
curr_loss = 0 #现在损失值
wrong_classify = 0 #误分类样本
#一次迭代对每个样本操作一次
for i in range (n_sample):
#输出函数
y_pred = np.dot( self ._w,X[i]) + self ._b
#损失函数
curr_loss + = - y[i] * y_pred
# 感知机只对误分类样本进行参数更新,使用梯度下降法
if y[i] * y_pred < = 0 :
self ._w + = self ._lr * y[i] * X[i]
self ._b + = self ._lr * y[i]
wrong_classify + = 1
num_epoch + = 1
loss_diff = curr_loss - prev_loss
prev_loss = curr_loss
# 训练终止条件:
# 1. 训练epoch数达到指定的epoch数时停止训练
# 2. 本epoch损失与上一个epoch损失差异小于指定的阈值时停止训练
# 3. 训练过程中不再存在误分类点时停止训练
if num_epoch > = self ._n_epoch or abs (loss_diff) < self ._loss_tolerance or wrong_classify = = 0 :
break
"""预测模型,顾名思义"""
def predict( self , x):
"""给定输入样本,预测其类别"""
y_pred = np.dot( self ._w, x) + self ._b
return 1 if y_pred > = 0 else - 1
#主函数
def main():
#参数数组生成
parser = argparse.ArgumentParser(description = "感知机算法实现命令行参数" )
parser.add_argument( "--nepoch" , type = int , default = 500 , help = "训练多少个epoch后终止训练" )
parser.add_argument( "--lr" , type = float , default = 0.1 , help = "学习率" )
parser.add_argument( "--loss_tolerance" , type = float , default = 0.001 , help = "当前损失与上一个epoch损失之差的绝对值小于该值时终止训练" )
args = parser.parse_args()
#导入数据
X, y = load_iris(return_X_y = True )
# print(y)
y[: 50 ] = - 1
# 分割数据
xtrain, xtest, ytrain, ytest = train_test_split(X[: 100 ], y[: 100 ], train_size = 0.8 , shuffle = True )
# print(xtest)
#调用并训练模型
model = PerceptronToby(args.nepoch, args.lr, args.loss_tolerance)
model.fit(xtrain, ytrain)
n_test = xtest.shape[ 0 ]
# print(n_test)
n_right = 0
for i in range (n_test):
y_pred = model.predict(xtest[i])
if y_pred = = ytest[i]:
n_right + = 1
else :
logger.info( "该样本真实标签为:{},但是toby模型预测标签为:{}" . format (ytest[i], y_pred))
logger.info( "toby模型在测试集上的准确率为:{}%" . format (n_right * 100 / n_test))
skmodel = Perceptron(max_iter = args.nepoch)
skmodel.fit(xtrain, ytrain)
logger.info( "sklearn模型在测试集上准确率为:{}%" . format ( 100 * skmodel.score(xtest, ytest)))
if __name__ = = "__main__" :
main()```
|
以上就是python实现感知机模型的示例的详细内容,更多关于python 实现感知机模型的示例代码的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/xiaolongdejia/p/13712742.html