如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
# -*- coding: utf-8 -*-
import os
import numpy as np
import pandas as pd
import h5py
import pylab
import matplotlib.pyplot as plt
trainpath = str ( 'C:/Users/49691/Desktop/数据集/train/' )
testpath = str ( 'C:/Users/49691/Desktop/数据集/test/' )
n_tr = len (os.listdir(trainpath))
print ( 'num of training files: ' , n_tr)
train_labels = pd.read_csv( 'C:/Users/49691/Desktop/数据集/sample_submission.csv' )
train_labels.head()
from skimage import io, transform
x = np.empty(shape = (n_tr, 224 , 224 , 3 ))
y = np.empty(n_tr)
labels = train_labels.invasive.values
name = train_labels.name.values
permutation = np.random.permutation(name.shape[ 0 ])
print (permutation)
print (labels[permutation])
save_data = pd.DataFrame({ 'name' :permutation, 'invasive' :labels[permutation]})
save_data.to_csv( 'C:/Users/49691/Desktop/数据集/b.csv' )
for k,v in enumerate (np.random.permutation(n_tr)):
print (k,v)
path = '{0}{1}.jpg' . format (trainpath, v)
tr_im = io.imread(path)
x[k] = transform.resize(tr_im, output_shape = ( 224 , 224 , 3 ))
y[k] = float (labels[v - 1 ])
|
以上这篇python 随机打乱 图片和对应的标签方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_21997625/article/details/79103048