题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158
\( a[i] \) 是奇数则满足条件1,是偶数则显然满足条件2;
因为如果把两个奇数的 \( a[i] \) 写成 \( 2*n+1 \) 和 \( 2*m+1 \),那么:
\( a[i]^{2} + a[j]^{2} = (2*n+1)^{2} + (2*m+1)^{2} = 4*(n^{2}+n+m^{2}+m) + 2 \)
这是个偶数,所以如果它是完全平方数,那么一定是一个偶数的平方,那么那个 \( +2 \) 就没有办法了,所以它一定不是一个完全平方数;
于是可以把点分成两部分;
然后用最小割的思路,不能一起选就连边,两部分内部的点显然是不互相连边的;
然后原点、汇点分别和两个部分有 \( b[i] \) 的边,跑最小割即可。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
int const xn=,xm=,inf=1e9;
int n,hd[xn],ct=,nxt[xm],to[xm],c[xm],dis[xn],cur[xn],S,T,a[xn],b[xn];
queue<int>q;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
void ade(int x,int y,int z){to[++ct]=y; nxt[ct]=hd[x]; hd[x]=ct; c[ct]=z;}
void add(int x,int y,int z){ade(x,y,z); ade(y,x,);}
bool ck(int a,int b)
{
ll x=(ll)a*a+(ll)b*b;
ll t=(ll)sqrt(x);
return t*t==x;
}
int gcd(int a,int b){return b?gcd(b,a%b):a;};
bool bfs()
{
for(int i=S;i<=T;i++)dis[i]=;
dis[S]=; q.push(S);
while(q.size())
{
int x=q.front(); q.pop();
for(int i=hd[x],u;i;i=nxt[i])
if(!dis[u=to[i]]&&c[i])dis[u]=dis[x]+,q.push(u);
}
return dis[T];
}
int dfs(int x,int fl)
{
if(x==T)return fl;
int ret=;
for(int &i=cur[x],u;i;i=nxt[i])
{
if(dis[u=to[i]]!=dis[x]+||!c[i])continue;
int tmp=dfs(u,min(fl-ret,c[i]));
if(!tmp)dis[u]=;
c[i]-=tmp; c[i^]+=tmp;
ret+=tmp; if(ret==fl)break;
}
return ret;
}
int main()
{
n=rd(); S=; T=n+; int ans=;
for(int i=;i<=n;i++)a[i]=rd();
for(int i=;i<=n;i++)b[i]=rd(),ans+=b[i];
for(int i=;i<=n;i++)
if(a[i]&)add(S,i,b[i]);
else add(i,T,b[i]);
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(ck(a[i],a[j])&&gcd(a[i],a[j])==)
{
if(a[i]&)add(i,j,inf);
else add(j,i,inf);
}
while(bfs())
{
memcpy(cur,hd,sizeof hd);
ans-=dfs(S,inf);
}
printf("%d\n",ans);
return ;
}
bzoj 3158 千钧一发 —— 最小割的更多相关文章
-
BZOJ 3158 千钧一发 最小割
分析: 偶数对满足条件2,所有奇数对满足条件1. 如果你能一眼看出这个规律,这道题就完成了一半. 我们只需要将数分为两类,a值为奇数,就从S向这个点连容量为b值的边,a值为偶数,就从这个点向T连容量为 ...
-
bzoj 3158 千钧一发(最小割)
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 767 Solved: 290[Submit][Status][Discuss] ...
-
bzoj 3158: 千钧一发【最小割】
这个条件非常妙啊,奇数和奇数一定满足1,因为\( (2a+1)^2+(2b+1)^2=4a^2+4a+4b^2+4b+2=2(2(a^2+a+b^2+b)+1) \)里面这个一定不是平方数因为除二后是 ...
-
【BZOJ-3275&;3158】Number&;千钧一发 最小割
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 748 Solved: 316[Submit][Status][Discus ...
-
BZOJ 3158: 千钧一发
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1201 Solved: 446[Submit][Status][Discuss ...
-
bzoj 3158 千钧一发——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 发现偶数之间一定满足第二个条件:奇数之间一定满足第一个条件 ( \( (2m+1)^{ ...
-
spoj 839 OPTM - Optimal Marks&;&;bzoj 2400【最小割】
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...
-
BZOJ 3158 千钧一发 (最大流->;二分图带权最大独立集)
题面:BZOJ传送门 和方格取数问题很像啊 但这道题不能像网格那样黑白染色构造二分图,所以考虑拆点建出二分图 我们容易找出数之间的互斥关系,在不能同时选的两个点之间连一条流量为$inf$的边 由于我们 ...
-
bzoj 2229 [Zjoi2011]最小割(分治+最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...
随机推荐
-
jqgrid cellEdit为true的时候,默认选中单元格值的解决方案
jqgrid cellEdit为true的时候,点击单元格的时候,鼠标在单元格最前面闪. 这时候如果要修改数字内容,非常麻烦.要全选单元格内容,不然不好改. 点击单元格的时候,默认选中单元格值的解决方 ...
-
06- Shell脚本学习--其它
Shell输入输出重定向 Unix 命令默认从标准输入设备(stdin)获取输入,将结果输出到标准输出设备(stdout)显示.一般情况下,标准输入设备就是键盘,标准输出设备就是终端,即显示器. 输出 ...
-
JAVA入门[6]-Mybatis简单示例
初次使用Mybatis,先手写一个hello world级别的例子,即根据id查询商品分类详情. 一.建表 create table Category ( Id INT not null, Name ...
-
【爆料】-《昆士兰大学毕业证书》Queensland一模一样原件
☞昆士兰大学毕业证书[微/Q:2544033233◆WeChat:CC6669834]UC毕业证书/联系人Alice[查看点击百度快照查看][留信网学历认证&博士&硕士&海归& ...
-
IE console.log 调试状态
最近项目遇到问题,发现alert一个弹窗,在IE中,打开开发人员工具后,可以弹出,但是不打开无法弹出,最后发现是console.log的原因,注释掉console相关的代码,问题就解决了 有些版本的I ...
-
Win32程序框架
// WinMsg.cpp : 定义应用程序的入口点. // #include "stdafx.h" #include <stdio.h> #include " ...
-
发布自己的类库到NuGet
NuGet是一个为大家所熟知的Visual Studio扩展,通过这个扩展,开发人员可以非常方便地在Visual Studio中安装或更新项目中所需要的第三方组件,同时也可以通过NuGet来安装一些V ...
-
java并发包消息队列(也即阻塞队列BlockingQueue)
下面是典型的消息队列的生产者与消费者模式的例子
-
python javar send
# -*- coding: utf-8 -*-import jpypeimport os.pathjarpath = os.path.join(os.path.abspath('.'), 'axja' ...
-
struts 拦截器
my-default.xml <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE struts ...