1001: [BeiJing2006]狼抓兔子
Time Limit: 15 Sec Memory Limit: 162 MB
Submit: 31805 Solved: 8494
[Submit][Status][Discuss]
Description
Input
Output
输出一个整数,表示参与伏击的狼的最小数量.
Sample Input
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
Sample Output
HINT
2015.4.16新加数据一组,可能会卡掉从前可以过的程序。
Solution
一眼一个最小割。以为可以复习一下板子了,可以看这边数N*N*3不对呀,直接跑最小割会炸的。
于是就翻题解学到了平面图转对偶图的神奇操作。
平面图可以参考这篇博文 https://www.cnblogs.com/lfri/p/9939463.html
平面图转对偶图的方法可以参考这篇博文 https://www.cnblogs.com/qzqzgfy/p/5578785.html
像题目中这种源点和汇点在*面的边界上的平面图叫做s-t平面图。
在这种图上可以实现求最小割转求最短路。
需要注意的是实际操作时要先把s到t连条虚边,把原图的边界的面分成两个部分,也就是说多了一个附加面作为s。
实现时主要是要给每个面(也就是对偶图中的点)编好号,代码中有注释。
Code
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> pi;
//注意空间要开够
const int N=**;
inline int read(){
int x=,w=;char ch=;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) x=(x<<)+(x<<)+(ch^),ch=getchar();
return w?-x:x;
}
struct edge{
int v,w,last;
}e[N*];
int tot,tail[N];
inline void add(int x,int y,int z){
e[++tot]=(edge){y,z,tail[x]};
tail[x]=tot;
e[++tot]=(edge){x,z,tail[y]};
tail[y]=tot;
}
int n,m,s,t,base;
//一个小正方形的下三角为(i-1)*(m-1)+j,上三角加个base
bool check(int i,int j){return i>=&&i<=n-&&j>=&&j<=m-;}
int down(int i,int j){return check(i,j)?(i-)*(m-)+j:s;}
int up(int i,int j){return check(i,j)?down(i,j)+base:t;}
void build(){
s=,base=(n-)*(m-),t=base<<|;
//原平面图的面有(n-1)*(m-1)*2+1个,再加个编号为0的附加面
for(int i=;i<=n;++i)
for(int j=;j<m;++j)
add(down(i-,j),up(i,j),read());
for(int i=;i<n;++i)
for(int j=;j<=m;++j)
add(up(i,j-),down(i,j),read());
for(int i=;i<n;++i)
for(int j=;j<m;++j)
add(up(i,j),down(i,j),read());
}
//这只是一个普通的堆优化dijkstra
bool vis[N];
int d[N];
void dij(){
priority_queue<pi,vector<pi>,greater<pi> > q;
memset(d,0x3f,sizeof d);d[s]=;
q.push(make_pair(d[s],s));
while(!q.empty()){
int x=q.top().second;q.pop();
if(vis[x]) continue;vis[x]=true;
for(int p=tail[x];p;p=e[p].last){
int &y=e[p].v,&w=e[p].w;
if(d[y]>d[x]+w){
d[y]=d[x]+w;
q.push(make_pair(d[y],y));
}
}
}
}
int main(){
n=read(),m=read();
build();dij();
cout<<d[t]<<endl;
return ;
}
BZOJ1001
[BZOJ1001][BeiJing2006]狼抓兔子(最小割转最短路|平面图转对偶图)的更多相关文章
-
BZOJ1001: [BeiJing2006]狼抓兔子 (最小割转最短路)
浅析最大最小定理在信息学竞赛中的应用---周东 ↑方法介绍 对于一个联通的平面图G(满足欧拉公式) 在s和t间新连一条边e; 然后建立一个原图的对偶图G*,G*中每一个点对应原图中每一个面,每一条边对 ...
-
BZOJ1001: [BeiJing2006]狼抓兔子 [最小割 | 对偶图+spfa]
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 19528 Solved: 4818[Submit][ ...
-
bzoj1001: [BeiJing2006]狼抓兔子 -- 最小割
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Description 现在小朋友们最喜欢的"喜羊羊与灰太狼 ...
-
BZOJ1001[BeiJing2006]狼抓兔子最小割網絡流
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...
-
BZOJ1001[BeiJing2006]狼抓兔子——最小割
题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
-
BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路
原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...
-
bzoj 1001 [BeiJing2006]狼抓兔子——最小割转最短路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 #include<cstdio> #include<cstring& ...
-
【bzoj1001】[BeiJing2006]狼抓兔子 最小割+对偶图+最短路
题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
-
BZOJ 1001: [BeiJing2006]狼抓兔子 最小割
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓 ...
-
[bzoj 1001][Beijing2006]狼抓兔子 (最小割+对偶图+最短路)
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...
随机推荐
-
字符数组,字符指针,字符串常量,以及sizeof的一些总结
1.以字符串形式出现的,编译器都会为该字符串自动添加一个\0作为结尾 如在代码中写"abc",编译器帮你存储的是"abc\0". 2.数组的类型是由该数组所存放 ...
-
Apache Spark Streaming的适用场景
使用场景: Spark Streaming 适合需要历史数据和实时数据结合进行分析的应用场景,对于实时性要求不是特别高的场景也能够胜任.
-
如何去除List中的重复值?
今天碰到一个问题,已经有一个List<string>,里面有重复值,希望将重复值去掉,同时不能破坏现有的顺序. 感谢 http://bbs.csdn.net/topics/39024721 ...
-
CSS未知div高度垂直居中代码_层和布局特效
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
-
MinGW32 +QT4.8.6+QT Creator+CMAKE的安装
参考网址: http://www.360doc.com/content/15/0813/09/7256015_491331699.shtml http://m.fx114.net/qa-196-213 ...
-
多元线性回归模型的特征压缩:岭回归和Lasso回归
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...
-
Mahout LDA 聚类
Mahout LDA 聚类 一.LDA简介 (一)主题模型 在主题模型中,主题表示一个概念.一个方面,表现为一系列相关的单词,是这些单词的条件概率.形象来说,主题就是一个桶,里面装了出现概率较高的 ...
-
jquery.uploadify上传插件HTML5版中文api使用说明
插件官网文档:http://www.uploadify.com/documentation/ H5版下载地址:https://download.csdn.net/download/u010075697 ...
-
BZOJ1258 [CQOI2007]三角形tri 模拟
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1258 题意概括 这种图中,一个三角形的三边如果被其他某一个三角形的一条边包括,那么我们说该三角形和 ...
-
<;基础>; PHP 数组操作
array_filter — 用回调函数过滤数组中的单元 ( 如果 callback 函数返回 true,则 array 数组的当前值会被包含在返回的结果数组中.数组的键名保留不变 ) array a ...