[LeetCode] Trapping Rain Water II 题解

时间:2022-08-27 15:41:03

题意

题目

思路

我一开始想的时候只考虑到一个结点周围的边界的情况,并没有考虑到边界的高度其实影响到所有的结点盛水的高度。

我们可以发现,中间是否能够盛水取决于边界是否足够高于里面的高度,所以这必然是一个从外到内,从小到大的一个过程。因为优先队列必然首先访问的是边界中最小的高度,如果周围小于这个高度那么必然是存在可以盛水的地方,就算是没有也没有任何的损失,只是更新了高度,但是队列依然会从高度小的结点开始访问;

实现

typedef struct node {
int x, y;
node(int x, int y) : x(x), y(y) {}
} Node; class Solution {
public:
/**
[1,4,3,1,3,2],
[3,2,1,3,2,4],
[2,3,3,2,3,1]
发现:四条边都不可以存储水,,也就是在这个二维数组中才能存储水
从第二列开始,去找四周里面大于它自己的第一个数(前提是三面或者两面是大于它的),然后减去自己
*/
int trapRainWater(vector<vector<int>>& heightMap) {
if (heightMap.size() == 0) {
return 0;
}
else if (heightMap.size() < 3 || heightMap[0].size() < 3) {
return 0;
} int row = heightMap.size();
int col = heightMap[0].size(); queue<Node*> queues;
vector<vector<int>> visited(row, vector<int>(col, 0)); Node *start = new Node(1, 1); visited[1][1] = 1;
queues.push(start); auto state_center = [&](int x, int y) {
if (x >= 1 && x <= heightMap.size()-2 && y >= 1 && y <= heightMap[0].size()-2) {
return true;
}
return false;
}; //上下左右
vector< vector<int>> layouts = {{1, 0}, {-1, 0}, {0, -1}, {0, 1}};
int sum = 0; while (!queues.empty()) {
Node* node = queues.front();
queues.pop(); // 取中间的值
if (state_center(node->x, node->y)) {
vector<int> priority;
bool isfinished = true;
// 找周围四个点
for (int i = 0; i < layouts.size(); i++) {
vector<int> temp = layouts[i];
int newx = node->x + temp[0];
int newy = node->y + temp[1]; // 不符合条件
if (heightMap[newx][newy] > heightMap[node->x][node->y] && (newx == 0 || newx == heightMap.size()-1) &&
(newy == 0 || newy == heightMap[0].size()-1)) {
isfinished = false;
break;
}
else if (newx == 0 || newx == heightMap.size()-1 || newy == 0 || newy == heightMap[0].size()-1) {
priority.push_back(heightMap[newx][newy]);
continue;
} Node *newnode = new Node(newx, newy);
if (!visited[newx][newy]) {
queues.push(newnode);
visited[newx][newy] = 1;
}
} if (isfinished) {
sort(priority.begin(), priority.end());
int val = heightMap[node->x][node->y];
for (int i = 0; i < priority.size(); i++) {
if (priority[i] >= val) {
sum += priority[i] - val;
break;
}
}
}
}
} return sum;
} /**
* 存放水的高度取决于周围的最小高度,BFS的思想
* 首先存取四面的高度,用优先队列去存储,保证取出来的一定是队列中的最小值
* 取较大的高度,如果存在没访问过并且小于当前最小高度的,则计算盛水高度,并且将该结点设置成已访问
*
* @param heightMap
* @return
*/
int trapRainWater2(vector<vector<int>>& heightMap) {
if (heightMap.size() == 0) {
return 0;
} int row = heightMap.size();
int col = heightMap[0].size(); struct cmp {
bool operator()(pair<int, int> a, pair<int, int> b) {
if (a.first > b.first) {
return true;
}
else {
return false;
}
}
}; priority_queue<pair<int, int>, vector<pair<int, int>>, cmp> queue;
vector<vector<int>> visited(row, vector<int>(col, 0)); // 将外围的高度加入到队列中,找出最小值
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (i == 0 || i == row-1 || j == 0 || j == col-1) {
queue.push(make_pair(heightMap[i][j], i * col + j));
visited[i][j] = 1;
}
}
} vector< vector<int>> layouts = {{1, 0}, {-1, 0}, {0, -1}, {0, 1}};
int maxHeight = INT_MIN, sum = 0;
while (!queue.empty()) {
pair<int, int> content = queue.top();
queue.pop(); int height = content.first;
int x = content.second / col;
int y = content.second % col; maxHeight = max(maxHeight, height); for (auto temp : layouts) {
int newx = x + temp[0];
int newy = y + temp[1]; if (newx < 0 || newx >= row || newy < 0 || newy >= col || visited[newx][newy]) {
continue;
} if (heightMap[newx][newy] < maxHeight) {
sum += maxHeight - heightMap[newx][newy];
} visited[newx][newy] = 1;
queue.push(make_pair(heightMap[newx][newy], newx * col + newy));
}
} return sum;
} void test() {
vector< vector<int>> water = {
{12,13,1,12},
{13,4,13,12},
{13,8,10,12},
{12,13,12,12},
{13,13,13,13}
};
int result = this->trapRainWater2(water);
cout << "sum:" << result << endl;
}
};

参考文章

[LeetCode] Trapping Rain Water II 题解的更多相关文章

  1. &lbrack;LeetCode&rsqb; Trapping Rain Water II 收集雨水之二

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevati ...

  2. Leetcode&colon; Trapping Rain Water II

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevati ...

  3. leetcode 11&period; Container With Most Water 、42&period; Trapping Rain Water 、238&period; Product of Array Except Self 、407&period; Trapping Rain Water II

    11. Container With Most Water https://www.cnblogs.com/grandyang/p/4455109.html 用双指针向中间滑动,较小的高度就作为当前情 ...

  4. &lbrack;LeetCode&rsqb; Trapping Rain Water 收集雨水

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  5. &lbrack;LeetCode&rsqb; 407&period; Trapping Rain Water II 收集雨水之二

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevati ...

  6. &lbrack;LeetCode&rsqb; 407&period; Trapping Rain Water II 收集雨水 II

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevati ...

  7. LeetCode&colon; Trapping Rain Water 解题报告

    https://oj.leetcode.com/problems/trapping-rain-water/ Trapping Rain WaterGiven n non-negative intege ...

  8. &lbrack;Swift&rsqb;LeetCode407&period; 接雨水 II &vert; Trapping Rain Water II

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevati ...

  9. &lbrack;leetcode&rsqb;Trapping Rain Water &commat; Python

    原题地址:https://oj.leetcode.com/problems/trapping-rain-water/ 题意: Given n non-negative integers represe ...

随机推荐

  1. gdb进程调试,多进程调试

    1.单进程的调试 常规的通过gdb cmd这种方式开启调试,特别说明的是通过attach的方法附加到一个指定的进程上去进行调试,这种方法适合于调试一个已经运行的进程,具体用法:  gdb -p [pi ...

  2. Hibernate单向多对一对象关系模型映射

    单向的many-to-one 案例: 班级和学生 父亲和子女 单向:只能由其中一方维护关系 Many-to-one中有many的一方法维护或者体现两者之间的关系. 单向的many-to-one描述学生 ...

  3. TestDisk 恢复rm -rf 的文件

    Linux操作系统下使用TestDisk恢复已删除的文件或目录 原创作者:szyzln/2015.10.16   转载需注明原始出处! 说明: testdisk和photorec是著名的恢复数据,而绝 ...

  4. 柬埔寨手机上网资费套餐(3G&sol;4G上网)

    柬埔寨三大运营商 Cellcard   官网套餐详情http://www.cellcard.com.kh/cellcard-internet Metfone  官网套餐详情http://www.met ...

  5. Nginx &plus; FastCgi &plus; Spawn-fcgi &plus; c 的架构

    参考: nginx+c/c++ fastcgi:http://www.yis.me/web/2011/11/01/66.htm cgi探索之路:http://github.tiankonguse.co ...

  6. HDU 4920 Matrix multiplication 矩阵相乘。稀疏矩阵

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  7. 5、C&num;基础整理(for 语句经典习题--与 if 的嵌套)

    1.for循环最基本运用:小球每次落地后再弹起是以前的4/5,求第5次弹起后的高度 ; i < ; i++) { high = high*/; } Console.WriteLine(&quot ...

  8. Android 引用library project

    1.如何将一个android工程作为库工程(library project) library project是作为jar包被其它android工程使用的,首先它也是普通的android工程.然后: 1 ...

  9. easy ui tabs 顶部绑定事件

    $(function(){     $('#tb').tabs('bindclick', function(index, title){     }); }); $.extend($.fn.tabs. ...

  10. WPF 得一些问题汇总

    1.CallMethodAction <TextBox Height="30" Name="txtUserName" Width="160&qu ...