投影法多用于图像的阈值分割。闲话不多说,现用Python实现。
上代码。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
import cv2
import numpy
img = cv2.imread( 'D:/0.jpg' , cv2.COLOR_BGR2GRAY)
height, width = img.shape[: 2 ]
#resized = cv2.resize(img, (3*width,3*height), interpolation=cv2.INTER_CUBIC)
#二值化
(_, thresh) = cv2.threshold(img, 150 , 255 , cv2.THRESH_BINARY)
#cv2.imshow('thresh', thresh)
#扩大黑色面积,使效果更明显
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, ( 10 , 10 )) #形态学处理,定义矩形结构
closed = cv2.erode(thresh, None , iterations = 5 )
cv2.imshow( 'erode' ,closed)
height, width = closed.shape[: 2 ]
v = [ 0 ] * width
z = [ 0 ] * height
a = 0
#垂直投影
#统计并存储每一列的黑点数
for x in range ( 0 , width):
for y in range ( 0 , height):
if closed[y,x][ 0 ] = = 0 :
a = a + 1
else :
continue
v[x] = a
a = 0
l = len (v)
#print l
#print width
#创建空白图片,绘制垂直投影图
emptyImage = numpy.zeros((height, width, 3 ), numpy.uint8)
for x in range ( 0 ,width):
for y in range ( 0 , v[x]):
b = ( 255 , 255 , 255 )
emptyImage[y,x] = b
cv2.imshow( 'chuizhi' , emptyImage)
#水平投影
#统计每一行的黑点数
a = 0
emptyImage1 = numpy.zeros((height, width, 3 ), numpy.uint8)
for y in range ( 0 , height):
for x in range ( 0 , width):
if closed[y,x][ 0 ] = = 0 :
a = a + 1
else :
continue
z[y] = a
a = 0
l = len (z)
#print l
#print height
#绘制水平投影图
for y in range ( 0 ,height):
for x in range ( 0 , z[y]):
b = ( 255 , 255 , 255 )
emptyImage1[y,x] = b
cv2.imshow( 'shuipin' , emptyImage1)
cv2.waitKey( 0 )
|
原图
垂直投影图
水平投影图
由这两图可以确定我们所需的分割点,从而可以进行下一步的文本分割。这将在下一篇博客中实现。
以上这篇Python实现投影法分割图像示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/TIME_LEAF/article/details/79373162