Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
Given the following binary search tree: root = [3,5,1,6,2,0,8,null,null,7,4]
_______3______ / \ ___5__ ___1__ / \ / \ 6 _2 0 8 / \ 7 4
Example 1:
Input: root, p = 5, q = 1 Output: 3 Explanation: The LCA of of nodes5
and1
is3.
Example 2:
Input: root, p = 5, q = 4 Output: 5 Explanation: The LCA of nodes5
and4
is5
, since a node can be a descendant of itself according to the LCA definition.
求二叉搜索树的最低公共祖先结点
根据二叉搜索树的性质:位于左子树的结点都比父结点小,位于右子树的结点都比父结点大。
两个结点的最低公共祖先:指两个结点都出现在某个结点的子树中,我们可以从根结点出发遍历一棵树,每遍历一个结点判断两个输入是否在其子树中,如果在其子树中,分别遍历它的所有结点并判断两个输入结点是否在其子树中。直到找到第一个结点,它的子树中同时包括两个输入结点但它的子结点却没有。那么该结点就是最低的公共祖先。
递归
class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (root == nullptr || p == nullptr || q == nullptr) return root; if (max(p->val, q->val) < root->val) return lowestCommonAncestor(root->left, p, q); else if (min(p->val, q->val) > root->val) return lowestCommonAncestor(root->right, p, q); else return root; } };
迭代
class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (!root || !p || !q) return nullptr; int left = p->val, right = q->val; while (root) { int target = root->val; if (target > left && target > right) root = root->left; else if (target < left && target < right) root = root->right; else break; } return root; } };