本文实例为大家分享了python scatter散点图用循环分类法加图例,供大家参考,具体内容如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
import matplotlib.pyplot as plt
import knn
plt.rcparams[ 'font.sans-serif' ] = [ 'simhei' ]
plt.rcparams[ 'axes.unicode_minus' ] = false
datingdatamat, datinglabels = knn.file2matrix( 'datingtestset2.txt' )
plt.figure()
type1_x = [] #一共有3类,所以定义3个空列表准备接受数据
type1_y = []
type2_x = []
type2_y = []
type3_x = []
type3_y = []
for i in range ( len (datinglabels)): #1000组数据,i循环1000次
if datinglabels[i] = = '1' : #根据标签进行数据分类,注意标签此时是字符串
type1_x.append(datingdatamat[i][ 0 ]) #取的是样本数据的第一列特征和第二列特征
type1_y.append(datingdatamat[i][ 1 ])
if datinglabels[i] = = '2' :
type2_x.append(datingdatamat[i][ 0 ])
type2_y.append(datingdatamat[i][ 1 ])
if datinglabels[i] = = '3' :
type3_x.append(datingdatamat[i][ 0 ])
type3_y.append(datingdatamat[i][ 1 ])
plt.scatter(type1_x, type1_y, s = 20 , c = 'r' , label = '不喜欢' )
plt.scatter(type2_x, type2_y, s = 40 , c = 'b' , label = '魅力一般' )
plt.scatter(type3_x, type3_y, s = 60 , c = 'k' , label = '极具魅力' )
plt.legend()
plt.show()
|
用面向对象的写法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
import matplotlib.pyplot as plt
import knn
plt.rcparams[ 'font.sans-serif' ] = [ 'simhei' ]
plt.rcparams[ 'axes.unicode_minus' ] = false
datingdatamat, datinglabels = knn.file2matrix( 'datingtestset2.txt' )
plt.figure()
axes = plt.subplot( 111 )
type1_x = []
type1_y = []
type2_x = []
type2_y = []
type3_x = []
type3_y = []
for i in range ( len (datinglabels)):
if datinglabels[i] = = '1' :
type1_x.append(datingdatamat[i][ 0 ])
type1_y.append(datingdatamat[i][ 1 ])
if datinglabels[i] = = '2' :
type2_x.append(datingdatamat[i][ 0 ])
type2_y.append(datingdatamat[i][ 1 ])
if datinglabels[i] = = '3' :
type3_x.append(datingdatamat[i][ 0 ])
type3_y.append(datingdatamat[i][ 1 ])
type1 = axes.scatter(type1_x, type1_y, s = 20 , c = 'r' )
type2 = axes.scatter(type2_x, type2_y, s = 40 , c = 'b' )
type3 = axes.scatter(type3_x, type3_y, s = 60 , c = 'k' )
plt.legend((type1, type2, type3), ( '不喜欢' , '魅力一般' , '极具魅力' ))
plt.show()
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/xiaobaicai4552/article/details/79069207