在使用 pandas 进行数据分析的过程中,我们常常会遇到将一行数据展开成多行的需求,多么希望能有一个类似于 hive sql 中的 explode 函数。
这个函数如下:
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
# !/usr/bin/env python
# -*- coding:utf-8 -*-
# create on 18/4/13
import pandas as pd
def dataframe_explode(dataframe, fieldname):
temp_fieldname = fieldname + '_made_tuple_'
dataframe[temp_fieldname] = dataframe[fieldname]. apply ( tuple )
list_of_dataframes = []
for values in dataframe[temp_fieldname].unique().tolist():
list_of_dataframes.append(pd.DataFrame({
temp_fieldname: [values] * len (values),
fieldname: list (values),
}))
dataframe = dataframe[ list ( set (dataframe.columns) - set ([fieldname]))].merge(pd.concat(list_of_dataframes), how = 'left' , on = temp_fieldname)
del dataframe[temp_fieldname]
return dataframe
df = pd.DataFrame({ 'listcol' :[[ 1 , 2 , 3 ],[ 4 , 5 , 6 ]], "aa" : [ 222 , 333 ]})
df = dataframe_explode(df, "listcol" )
|
Description
将 dataframe 按照某一指定列进行展开,使得原来的每一行展开成一行或多行。( 注:该列可迭代, 例如list, tuple, set)
补充知识:Pandas列中的字典/列表拆分为单独的列
我就废话不多说了,大家还是直接看代码吧
1
2
3
4
5
6
7
|
[ 1 ] df
Station ID Pollutants
8809 { "a" : "46" , "b" : "3" , "c" : "12" }
8810 { "a" : "36" , "b" : "5" , "c" : "8" }
8811 { "b" : "2" , "c" : "7" }
8812 { "c" : "11" }
8813 { "a" : "82" , "c" : "15" }
|
Method 1:
step 1: convert the Pollutants column to Pandas dataframe series
1
2
3
4
5
6
7
8
9
|
df_pol_ps = data_df[ 'Pollutants' ]. apply (pd.Series)
df_pol_ps:
a b c
0 46 3 12
1 36 5 8
2 NaN 2 7
3 NaN NaN 11
4 82 NaN 15
|
step 2: concat columns a, b, c and drop/remove the Pollutants
1
2
3
4
5
6
7
8
9
|
df_final = pd.concat([df, df_pol_ps], axis = 1 ).drop( 'Pollutants' , axis = 1 )
df_final:
StationID a b c
0 8809 46 3 12
1 8810 36 5 8
2 8811 NaN 2 7
3 8812 NaN NaN 11
4 8813 82 NaN 15
|
Method 2:
1
2
3
4
5
6
7
8
9
|
df_final = pd.concat([df, df[ 'Pollutants' ]. apply (pd.Series)], axis = 1 ).drop( 'Pollutants' , axis = 1 )
df_final:
StationID a b c
0 8809 46 3 12
1 8810 36 5 8
2 8811 NaN 2 7
3 8812 NaN NaN 11
4 8813 82 NaN 15
|
以上这篇pandas dataframe 中的explode函数用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Sinsa110/article/details/85260302