pandas.DataFrame.where
DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)
inplace : boolean, default False
Whether to perform the operation in place on the data
axis : alignment axis if needed, default None
level : alignment level if needed, default None
try_cast : boolean, default False
try to cast the result back to the input type (if possible),
raise_on_error : boolean, default True
Whether to raise on invalid data types (e.g. trying to where on strings)
also see DataFrame.mask()
Notes
The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond
is True
the element is used; otherwise the corresponding element from the DataFrame other
is used.
The signature for DataFrame.where()
differs from numpy.where()
. Roughly df1.where(m, df2)
is equivalent to np.where(m, df1, df2)
.
For further details and examples see the where
documentation in indexing.
Examples
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df)
A B
0 True True
1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df)
A B
0 True True
1 True True
2 True True
3 True True
4 True True 参考文档numpy或pandas文档
arr = np.random.randn(4,4)