题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
思路:莫比乌斯反演,ans=solve(b/k,d/k)-solve((a-1)/k,d/k)-solve(b/k,(c-1)/k)+solve((a-1)/k,(c-1)/k)
代码1:超时。
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std; const int MAXN=;
bool check[MAXN+];
int prime[MAXN+];
int mu[MAXN+];
void Mobius(){
memset(check,false,sizeof(check));
mu[]=;
int tot=;
for(int i=;i<=MAXN;i++){
if(!check[i]){
prime[tot++]=i;
mu[i]=-;
}
for(int j=;j<tot;j++){
if(i*prime[j]>MAXN)break;
check[i*prime[j]]=true;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
else{
mu[i*prime[j]]=-mu[i];
}
}
}
}
//找[1,n],[1,m]内互质的数的对数
long long solve(int n,int m){
long long ans=;
if(n>m)swap(n,m);
for(int i=;i<=n;i++)
ans+=(long long)mu[i]*(n/i)*(m/i);
return ans;
} int main(){
Mobius();
int t;
int a,b,c,d,k;
scanf("%d",&t);
while(t--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
long long ans=solve(b/k,d/k)-solve((a-)/k,d/k)-solve(b/k,(c-)/k)+solve((a-)/k,(c-)/k);
printf("%lld\n",ans);
}
return ;
}
代码2:用到分块优化。待研究。
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std; const int MAXN=;
bool check[MAXN+];
int prime[MAXN+];
int mu[MAXN+];
void Mobius(){
memset(check,false,sizeof(check));
mu[]=;
int tot=;
for(int i=;i<=MAXN;i++){
if(!check[i]){
prime[tot++]=i;
mu[i]=-;
}
for(int j=;j<tot;j++){
if(i*prime[j]>MAXN)break;
check[i*prime[j]]=true;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
else{
mu[i*prime[j]]=-mu[i];
}
}
}
}
int sum[MAXN+];
//找[1,n],[1,m]内互质的数的对数
long long solve(int n,int m){
long long ans=;
if(n>m)swap(n,m);
for(int i=,la=;i<=n;i=la+){
la=min(n/(n/i),m/(m/i));
ans+=(long long)(sum[la]-sum[i-])*(n/i)*(m/i);
}
return ans;
} int main(){
Mobius();
sum[]=;
for(int i=;i<=MAXN;i++)
sum[i]=sum[i-]+mu[i];
int t;
int a,b,c,d,k;
scanf("%d",&t);
while(t--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
long long ans=solve(b/k,d/k)-solve((a-)/k,d/k)-solve(b/k,(c-)/k)+solve((a-)/k,(c-)/k);
printf("%lld\n",ans);
}
return ;
}