I am new to pandas (well, to all things "programming"...), but have been encouraged to give it a try. I have a mongodb database - "test" - with a collection called "tweets". I access the database in ipython:
我对熊猫(嗯,对所有的东西“编程”…)都很陌生,但是我们鼓励我尝试一下。我有一个mongodb数据库——“test”——带有一个名为“tweets”的集合。我访问ipython中的数据库:
import sys
import pymongo
from pymongo import Connection
connection = Connection()
db = connection.test
tweets = db.tweets
the document structure of documents in tweets is as follows:
tweets中文档的文档结构如下:
entities': {u'hashtags': [],
u'symbols': [],
u'urls': [],
u'user_mentions': []},
u'favorite_count': 0,
u'favorited': False,
u'filter_level': u'medium',
u'geo': {u'coordinates': [placeholder coordinate, -placeholder coordinate], u'type': u'Point'},
u'id': 349223842700472320L,
u'id_str': u'349223842700472320',
u'in_reply_to_screen_name': None,
u'in_reply_to_status_id': None,
u'in_reply_to_status_id_str': None,
u'in_reply_to_user_id': None,
u'in_reply_to_user_id_str': None,
u'lang': u'en',
u'place': {u'attributes': {},
u'bounding_box': {u'coordinates': [[[placeholder coordinate, placeholder coordinate],
[-placeholder coordinate, placeholder coordinate],
[-placeholder coordinate, placeholder coordinate],
[-placeholder coordinate, placeholder coordinate]]],
u'type': u'Polygon'},
u'country': u'placeholder country',
u'country_code': u'example',
u'full_name': u'name, xx',
u'id': u'user id',
u'name': u'name',
u'place_type': u'city',
u'url': u'http://api.twitter.com/1/geo/id/1820d77fb3f65055.json'},
u'retweet_count': 0,
u'retweeted': False,
u'source': u'<a href="http://twitter.com/download/iphone" rel="nofollow">Twitter for iPhone</a>',
u'text': u'example text',
u'truncated': False,
u'user': {u'contributors_enabled': False,
u'created_at': u'Sat Jan 22 13:42:59 +0000 2011',
u'default_profile': False,
u'default_profile_image': False,
u'description': u'example description',
u'favourites_count': 100,
u'follow_request_sent': None,
u'followers_count': 100,
u'following': None,
u'friends_count': 100,
u'geo_enabled': True,
u'id': placeholder_id,
u'id_str': u'placeholder_id',
u'is_translator': False,
u'lang': u'en',
u'listed_count': 0,
u'location': u'example place',
u'name': u'example name',
u'notifications': None,
u'profile_background_color': u'000000',
u'profile_background_image_url': u'http://a0.twimg.com/images/themes/theme19/bg.gif',
u'profile_background_image_url_https': u'https://si0.twimg.com/images/themes/theme19/bg.gif',
u'profile_background_tile': False,
u'profile_banner_url': u'https://pbs.twimg.com/profile_banners/241527685/1363314054',
u'profile_image_url': u'http://a0.twimg.com/profile_images/378800000038841219/8a71d0776da0c48dcc4ef6fee9f78880_normal.jpeg',
u'profile_image_url_https': u'https://si0.twimg.com/profile_images/378800000038841219/8a71d0776da0c48dcc4ef6fee9f78880_normal.jpeg',
u'profile_link_color': u'000000',
u'profile_sidebar_border_color': u'FFFFFF',
u'profile_sidebar_fill_color': u'000000',
u'profile_text_color': u'000000',
u'profile_use_background_image': False,
u'protected': False,
u'screen_name': placeholder screen_name',
u'statuses_count': xxxx,
u'time_zone': u'placeholder time_zone',
u'url': None,
u'utc_offset': -21600,
u'verified': False}}
Now, as far as I understand, pandas' main data structure - a spreadsheet-like table - is called DataFrame. How can I load the data from my "tweets" collection into pandas' DataFrame? And how can I query for a subdocument within the database?
现在,据我所知,熊猫的主要数据结构——一个类似表格的表格——被称为DataFrame。我怎样才能将我的“tweets”收集数据加载到熊猫的DataFrame中呢?如何查询数据库中的子文档?
3 个解决方案
#1
17
Comprehend the cursor you got from the MongoDB before passing it to DataFrame
在将光标传递到DataFrame之前,要理解从MongoDB获得的光标
import pandas as pd
df = pd.DataFrame(list(tweets.find()))
#2
7
If you have data in MongoDb like this:
如果你在MongoDb中有这样的数据:
[
{
"name": "Adam",
"age": 27,
"address":{
"number": 4,
"street": "Main Road",
"city": "Oxford"
}
},
{
"name": "Steve",
"age": 32,
"address":{
"number": 78,
"street": "High Street",
"city": "Cambridge"
}
}
]
You can put the data straight into a dataframe like this:
您可以将数据直接放入这样的dataframe中:
from pandas import DataFrame
df = DataFrame(list(db.collection_name.find({}))
And you will get this output:
你会得到这个输出:
df.head()
| | name | age | address |
|----|---------|------|-----------------------------------------------------------|
| 1 | "Steve" | 27 | {"number": 4, "street": "Main Road", "city": "Oxford"} |
| 2 | "Adam" | 32 | {"number": 78, "street": "High St", "city": "Cambridge"} |
However the subdocuments will just appear as JSON inside the subdocument cell. If you want to flatten objects so that subdocument properties are shown as individual cells you can use json_normalize without any parameters.
然而,子文档将在子文档单元格中以JSON的形式出现。如果希望将对象展开,以便子文档属性显示为单个单元格,则可以使用json_normalize而不使用任何参数。
from pandas.io.json import json_normalize
datapoints = list(db.collection_name.find({})
df = json_normalize(datapoints)
df.head()
This will give the dataframe in this format:
这将给dataframe以这种格式:
| | name | age | address.number | address.street | address.city |
|----|--------|------|----------------|----------------|--------------|
| 1 | Thomas | 27 | 4 | "Main Road" | "Oxford" |
| 2 | Mary | 32 | 78 | "High St" | "Cambridge" |
#3
3
You can load your MongoDB data to pandas DataFame using this code. It works for me. Hope for you too.
您可以使用此代码将MongoDB数据加载到熊猫数据名。它适合我。希望你也一样。
import pymongo
import pandas as pd
from pymongo import Connection
connection = Connection()
db = connection.database_name
input_data = db.collection_name
data = pd.DataFrame(list(input_data.find()))
#1
17
Comprehend the cursor you got from the MongoDB before passing it to DataFrame
在将光标传递到DataFrame之前,要理解从MongoDB获得的光标
import pandas as pd
df = pd.DataFrame(list(tweets.find()))
#2
7
If you have data in MongoDb like this:
如果你在MongoDb中有这样的数据:
[
{
"name": "Adam",
"age": 27,
"address":{
"number": 4,
"street": "Main Road",
"city": "Oxford"
}
},
{
"name": "Steve",
"age": 32,
"address":{
"number": 78,
"street": "High Street",
"city": "Cambridge"
}
}
]
You can put the data straight into a dataframe like this:
您可以将数据直接放入这样的dataframe中:
from pandas import DataFrame
df = DataFrame(list(db.collection_name.find({}))
And you will get this output:
你会得到这个输出:
df.head()
| | name | age | address |
|----|---------|------|-----------------------------------------------------------|
| 1 | "Steve" | 27 | {"number": 4, "street": "Main Road", "city": "Oxford"} |
| 2 | "Adam" | 32 | {"number": 78, "street": "High St", "city": "Cambridge"} |
However the subdocuments will just appear as JSON inside the subdocument cell. If you want to flatten objects so that subdocument properties are shown as individual cells you can use json_normalize without any parameters.
然而,子文档将在子文档单元格中以JSON的形式出现。如果希望将对象展开,以便子文档属性显示为单个单元格,则可以使用json_normalize而不使用任何参数。
from pandas.io.json import json_normalize
datapoints = list(db.collection_name.find({})
df = json_normalize(datapoints)
df.head()
This will give the dataframe in this format:
这将给dataframe以这种格式:
| | name | age | address.number | address.street | address.city |
|----|--------|------|----------------|----------------|--------------|
| 1 | Thomas | 27 | 4 | "Main Road" | "Oxford" |
| 2 | Mary | 32 | 78 | "High St" | "Cambridge" |
#3
3
You can load your MongoDB data to pandas DataFame using this code. It works for me. Hope for you too.
您可以使用此代码将MongoDB数据加载到熊猫数据名。它适合我。希望你也一样。
import pymongo
import pandas as pd
from pymongo import Connection
connection = Connection()
db = connection.database_name
input_data = db.collection_name
data = pd.DataFrame(list(input_data.find()))