如何将json加载到熊猫数据存储器中?

时间:2021-11-30 07:37:38

I am using a REST API to get a json file as follows:

我使用REST API获取json文件如下:

import urllib2
import pandas as pd
import numpy as np
import requests

request='myrequest'
data= requests.get(request)
json=data.json()
df=pd.DataFrame(json)

and the dataframe looks like

dataframe是这样的

                                               items
0  {u'access': u'all', u'count': 501, u'time': 2014}
1  {u'access': u'all', u'count': 381, u'time': 2015}

How can I transform this single column (that looks like a dictionary) into proper columns in Pandas?

如何将这一栏(看起来像一本字典)转换成正确的熊猫栏?

EDIT

编辑

the raw json data looks like this

原始json数据如下所示

{
  "items": [
    {
      "access": "all",
      "count": 200,
      "time": 2015
    },
    {
      "access": "all",
      "count": 14,
      "time": 2015
    },
  ]
}

Thanks!

谢谢!

2 个解决方案

#1


5  

pd.read_json(json_str)

pd.read_json(json_str)

Here is the Pandas documentation.

这是熊猫的文件。

EDIT:

编辑:

For a list of json str you can also just:

对于json str列表,您还可以:

import json
import pandas as pd

df = pd.DataFrame.from_records(map(json.loads, json_lst))

#2


1  

Well, it seems to me that JSON import to nesting containing any variations of dicts and list, while Pandas require a single dict collection with iterable elements. You therefore have to do a little bit of conversion if they do not match.

嗯,在我看来,JSON导入到嵌套中,其中包含任何dicts和list的变体,而熊猫需要具有可迭代元素的单个dict集合。因此,如果它们不匹配,就需要进行一些转换。

Assuming I interpret the structure of your JSON correctly (and I might not since, you are only printing the end product, not the JSON structure), it looks like it is a list of dictionaries. If that is the case, here is the solution:

假设我正确地解释了JSON的结构(我可能不会这么做,因为您只是打印最终产品,而不是JSON结构),它看起来像是一个字典列表。如果是这样的话,解决办法是:

data = {k:[v] for k,v in json[0].items()}
for jso in json[1:]:
    for k,v in jso.items():
      data[k].append(v)

df = pd.DataFrame(data)

Edit:

编辑:

Values are provided, to get my code working, you just need the following in front:

提供了值,为了让我的代码正常工作,您只需要以下内容:

json = json["items"]

I think this should work, but it depends on how requests processes JSON. Give me a printout of the json object if it doesn't work.

我认为这应该是可行的,但这取决于请求如何处理JSON。如果json对象不能工作,请给我一个打印输出。

#1


5  

pd.read_json(json_str)

pd.read_json(json_str)

Here is the Pandas documentation.

这是熊猫的文件。

EDIT:

编辑:

For a list of json str you can also just:

对于json str列表,您还可以:

import json
import pandas as pd

df = pd.DataFrame.from_records(map(json.loads, json_lst))

#2


1  

Well, it seems to me that JSON import to nesting containing any variations of dicts and list, while Pandas require a single dict collection with iterable elements. You therefore have to do a little bit of conversion if they do not match.

嗯,在我看来,JSON导入到嵌套中,其中包含任何dicts和list的变体,而熊猫需要具有可迭代元素的单个dict集合。因此,如果它们不匹配,就需要进行一些转换。

Assuming I interpret the structure of your JSON correctly (and I might not since, you are only printing the end product, not the JSON structure), it looks like it is a list of dictionaries. If that is the case, here is the solution:

假设我正确地解释了JSON的结构(我可能不会这么做,因为您只是打印最终产品,而不是JSON结构),它看起来像是一个字典列表。如果是这样的话,解决办法是:

data = {k:[v] for k,v in json[0].items()}
for jso in json[1:]:
    for k,v in jso.items():
      data[k].append(v)

df = pd.DataFrame(data)

Edit:

编辑:

Values are provided, to get my code working, you just need the following in front:

提供了值,为了让我的代码正常工作,您只需要以下内容:

json = json["items"]

I think this should work, but it depends on how requests processes JSON. Give me a printout of the json object if it doesn't work.

我认为这应该是可行的,但这取决于请求如何处理JSON。如果json对象不能工作,请给我一个打印输出。