# -*- coding: utf-8 -*-
import as plt
import tensorflow as tf
import numpy as np
import os
()
image_raw_data = ("E:\\testData\\images\\",'rb').read()
with () as sess:
img_data = .decode_jpeg(image_raw_data)
# 输出解码之后的三维矩阵。
#print(img_data.eval())
#print(img_data.get_shape())
img_data.set_shape([1797, 2673, 3])
print(img_data.get_shape())
#### 2. 打印图片
with () as sess:
(img_data.eval())
()
#### 3. 重新调整图片大小
with () as sess:
resized = .resize_images(img_data, [300, 300], method=0)
# TensorFlow的函数处理图片后存储的数据是float32格式的,需要转换成uint8才能正确打印图片。
print("Digital type: ", )
cat = ((), dtype='uint8')
# .convert_image_dtype(rgb_image, tf.float32)
(cat)
()
#### 4. 裁剪和填充图片
with () as sess:
croped = .resize_image_with_crop_or_pad(img_data, 1000, 1000)
padded = .resize_image_with_crop_or_pad(img_data, 3000, 3000)
(())
()
(())
()
#### 5. 截取中间50%的图片
with () as sess:
central_cropped = .central_crop(img_data, 0.5)
(central_cropped.eval())
()
#### 6. 翻转图片
with () as sess:
# 上下翻转
#flipped1 = .flip_up_down(img_data)
# 左右翻转
#flipped2 = .flip_left_right(img_data)
#对角线翻转
transposed = .transpose_image(img_data)
(())
()
# 以一定概率上下翻转图片。
#flipped = .random_flip_up_down(img_data)
# 以一定概率左右翻转图片。
#flipped = .random_flip_left_right(img_data)
#### 7. 图片色彩调整
with () as sess:
# 将图片的亮度-0.5。
#adjusted = .adjust_brightness(img_data, -0.5)
# 将图片的亮度-0.5
#adjusted = .adjust_brightness(img_data, 0.5)
# 在[-max_delta, max_delta)的范围随机调整图片的亮度。
adjusted = .random_brightness(img_data, max_delta=0.5)
# 将图片的对比度-5
#adjusted = .adjust_contrast(img_data, -5)
# 将图片的对比度+5
#adjusted = .adjust_contrast(img_data, 5)
# 在[lower, upper]的范围随机调整图的对比度。
#adjusted = .random_contrast(img_data, lower, upper)
(())
()
#### 8. 添加色相和饱和度
with () as sess:
adjusted = .adjust_hue(img_data, 0.1)
#adjusted = .adjust_hue(img_data, 0.3)
#adjusted = .adjust_hue(img_data, 0.6)
#adjusted = .adjust_hue(img_data, 0.9)
# 在[-max_delta, max_delta]的范围随机调整图片的色相。max_delta的取值在[0, 0.5]之间。
#adjusted = .random_hue(image, max_delta)
# 将图片的饱和度-5。
#adjusted = .adjust_saturation(img_data, -5)
# 将图片的饱和度+5。
#adjusted = .adjust_saturation(img_data, 5)
# 在[lower, upper]的范围随机调整图的饱和度。
#adjusted = .random_saturation(img_data, lower, upper)
# 将代表一张图片的三维矩阵中的数字均值变为0,方差变为1。
#adjusted = .per_image_whitening(img_data)
(())
()
#### 9. 添加标注框并裁减。
with () as sess:
boxes = ([[[0.05, 0.05, 0.9, 0.7], [0.35, 0.47, 0.5, 0.56]]])
begin, size, bbox_for_draw = .sample_distorted_bounding_box(
(img_data), bounding_boxes=boxes)
batched = tf.expand_dims(.convert_image_dtype(img_data, tf.float32), 0)
image_with_box = .draw_bounding_boxes(batched, bbox_for_draw)
distorted_image = (img_data, begin, size)
(distorted_image.eval())
()