1.1 常规方法
[
.
.
.
.
.
.
.
.
.
.
.
.
a
31
a
32
a
33
a
34
.
.
.
.
.
.
.
.
.
.
.
.
]
⏟
A
m
∗
n
[
.
.
.
.
.
.
.
.
.
b
14
.
.
.
.
.
.
.
.
.
b
24
.
.
.
.
.
.
.
.
.
b
34
.
.
.
.
.
.
.
.
.
b
44
]
⏟
B
n
∗
p
=
[
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
C
34
.
.
.
.
.
.
.
.
.
.
.
.
]
⏟
C
m
∗
p
\underbrace{\begin{bmatrix} ...&...&...&...\\ a_{31}&a_{32}&a_{33}&a_{34}\\ ...&...&...&...\\ \end{bmatrix}}_{A_{m*n}} \underbrace{\begin{bmatrix} ...&...&...&b_{14}\\ ...&...&...&b_{24}\\ ...&...&...&b_{34}\\ ...&...&...&b_{44} \end{bmatrix}}_{B_{n*p}}= \underbrace{\begin{bmatrix} ...&...&...&...\\ ...&...&...&C_{34}\\ ...&...&...&... \end{bmatrix}}_{C_{m*p}}
Am∗n
...a31......a32......a33......a34...
Bn∗p
....................................b14b24b34b44
=Cm∗p
..............................C34...
C
34
=
A
r
o
w
3
∗
B
c
o
l
4
=
∑
i
=
1
n
a
3
i
∗
b
i
4
C_{34} = A_{row_3}*B_{col_4} = \sum\limits_{i=1}^{n}a_{3i}*b_{i4}
C34=Arow3∗Bcol4=i=1∑na3i∗bi4
1.2 列向量组合
已知
[
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
]
[
B
11
B
21
B
31
]
=
B
11
∗
A
c
o
l
1
+
B
21
∗
A
c
o
l
2
+
B
31
∗
A
c
o
l
3
=
[
B
11
∗
A
11
+
B
21
∗
A
12
+
B
31
∗
A
13
B
11
∗
A
21
+
B
21
∗
A
22
+
B
31
∗
A
23
B
11
∗
A
31
+
B
21
∗
A
32
+
B
31
∗
A
33
]
\begin{aligned} \begin{bmatrix} A_{11}&A_{12}&A_{13}\\ A_{21}&A_{22}&A_{23}\\ A_{31}&A_{32}&A_{33} \end{bmatrix} \begin{bmatrix} B_{11}\\ B_{21}\\ B_{31} \end{bmatrix} &=B_{11}*A_{col1}+B_{21}*A_{col2}+B_{31}*A_{col3} \newline &= \begin{bmatrix} B_{11}*A_{11}+B_{21}*A_{12}+B_{31}*A_{13}\\ B_{11}*A_{21}+B_{21}*A_{22}+B_{31}*A_{23}\\ B_{11}*A_{31}+B_{21}*A_{32}+B_{31}*A_{33} \end{bmatrix}\end{aligned}
A11A21A31A12A22A32A13A23A33
B11B21B31
=B11∗Acol1+B21∗Acol2+B31∗Acol3=
B11∗A11+B21∗A12+B31∗A13B11∗A21+B21∗A22+B31∗A23B11∗A31+B21∗A32+B31∗A33
那么
[
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
]
⏟
A
[
B
11
B
12
B
21
B
22
B
31
B
32
]
⏟
B
=
[
B
11
∗
A
c
o
l
1
+
B
21
∗
A
c
o
l
2
+
B
31
∗
A
c
o
l
3
B
12
∗
A
c
o
l
1
+
B
22
∗
A
c
o
l
2
+
B
32
∗
A
c
o
l
3
]
⏟
C
=
[
B
11
∗
A
11
+
B
21
∗
A
12
+
B
31
∗
A
13
B
12
∗
A
11
+
B
22
∗
A
12
+
B
32
∗
A
13
B
11
∗
A
21
+
B
21
∗
A
22
+
B
31
∗
A
23
B
12
∗
A
21
+
B
22
∗
A
22
+
B
32
∗
A
23
B
11
∗
A
31
+
B
21
∗
A
32
+
B
31
∗
A
33
B
12
∗
A
31
+
B
22
∗
A
32
+
B
32
∗
A
33
]
\begin{aligned} \underbrace{\begin{bmatrix} A_{11}&A_{12}&A_{13}\\ A_{21}&A_{22}&A_{23}\\ A_{31}&A_{32}&A_{33} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\\ B_{31}&B_{32} \end{bmatrix}}_{B} &=\underbrace{\begin{bmatrix}B_{11}*A_{col1}+B_{21}*A_{col2}+B_{31}*A_{col3} & B_{12}*A_{col1}+B_{22}*A_{col2}+B_{32}*A_{col3}\end{bmatrix}}_{C} \newline &=\begin{bmatrix} B_{11}*A_{11}+B_{21}*A_{12}+B_{31}*A_{13}& B_{12}*A_{11}+B_{22}*A_{12}+B_{32}*A_{13}\\ B_{11}*A_{21}+B_{21}*A_{22}+B_{31}*A_{23} & B_{12}*A_{21}+B_{22}*A_{22}+B_{32}*A_{23}\\ B_{11}*A_{31}+B_{21}*A_{32}+B_{31}*A_{33} & B_{12}*A_{31}+B_{22}*A_{32}+B_{32}*A_{33} \end{bmatrix}\end{aligned}
A
A11A21A31A12A22A32A13A23A33
B
B11B21B31B12B22B32
=C
[B11∗Acol1+B21∗Acol2+B31∗Acol3B12∗Acol1+B22∗Acol2+B32∗Acol3]=
B11∗A11+B21∗A12+B31∗A13B11∗A21+B21∗A22+B31∗A23B11∗A31+B21∗A32+B31∗A33B12∗A11+B22∗A12+B32∗A13B12∗A21+B22∗A22+B32∗A23B12∗A31+B22∗A32+B32∗A33
C矩阵是A矩阵的列向量组合
1.3 行向量组合
已知
[
A
11
A
12
A
13
]
[
B
11
B
12
B
21
B
22
B
31
B
32
]
=
A
11
∗
B
r
o
w
1
+
A
12
∗
B
r
o
w
2
+
A
13
∗
B
r
o
w
3
=
[
A
11
∗
B
11
A
11
∗
B
12
+
+
A
12
∗
B
21
A
12
∗
B
22
+
+
A
13
∗
B
31
A
13
∗
B
32
]
\begin{aligned} \begin{bmatrix} A_{11}&A_{12}&A_{13} \end{bmatrix} \begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\\ B_{31}&B_{32} \end{bmatrix} &=A_{11}*B_{row1}+A_{12}*B_{row2}+A_{13}*B_{row3} \newline &= \begin{bmatrix} A_{11}*B_{11}&A_{11}*B_{12}\\ +&+\\ A_{12}*B_{21}&A_{12}*B_{22}\\ +&+\\ A_{13}*B_{31}&A_{13}*B_{32} \end{bmatrix}\end{aligned}
[A11A12A13]
B11B21B31B12B22B32
=A11∗Brow1+A12∗Brow2+A13∗Brow3=
A11∗B11+A12∗B21+A13∗B31A11∗B12+A12∗B22+A13∗B32
那么
[
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
]
⏟
A
[
B
11
B
12
B
21
B
22
B
31
B
32
]
⏟
B
=
[
A
11
∗
B
r
o
w
1
+
A
12
∗
B
r
o
w
2
+
A
13
∗
B
r
o
w
3
A
21
∗
B
r
o
w
1
+
A
22
∗
B
r
o
w
2
+
A
23
∗
B
r
o
w
3
A
31
∗
B
r
o
w
1
+
A
32
∗
B
r
o
w
2
+
A
33
∗
B
r
o
w
3
]
⏟
C
\begin{aligned} \underbrace{\begin{bmatrix} A_{11}&A_{12}&A_{13}\\ A_{21}&A_{22}&A_{23}\\ A_{31}&A_{32}&A_{33} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\\ B_{31}&B_{32} \end{bmatrix}}_{B} &=\underbrace{\begin{bmatrix} A_{11}*B_{row1}+A_{12}*B_{row2}+A_{13}*B_{row3}\\ A_{21}*B_{row1}+A_{22}*B_{row2}+A_{23}*B_{row3}\\ A_{31}*B_{row1}+A_{32}*B_{row2}+A_{33}*B_{row3} \end{bmatrix}}_{C} \newline \end{aligned}
A
A11A21A31A12A22A32A13A23A33
B
B11B21B31B12B22B32
=C
A11∗Brow1+A12∗Brow2+A13∗Brow3A21∗Brow1+A22∗Brow2+A23∗Brow3A31∗Brow1+A32∗Brow2+A33∗Brow3
C矩阵是B矩阵的行向量组合
1.4 单行和单列的乘积和
[ 2 7 3 8 4 9 ] [ 1 6 1 1 ] = [ 2 3 4 ] [ 1 6 ] + [ 7 8 9 ] [ 1 1 ] = [ 9 19 11 26 13 33 ] \begin{aligned} \begin{bmatrix} 2&7\\ 3&8\\ 4&9 \end{bmatrix} \begin{bmatrix} 1&6\\ 1&1\\ \end{bmatrix} &= \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix} \begin{bmatrix} 1&6\\ \end{bmatrix} + \begin{bmatrix} 7\\ 8\\ 9 \end{bmatrix} \begin{bmatrix} 1&1\\ \end{bmatrix} \newline &= \begin{bmatrix} 9&19\\ 11&26\\ 13&33 \end{bmatrix} \end{aligned} 234789 [1161]= 234 [16]+ 789 [11]= 91113192633
1.5 块乘法
[ A 1 ∣ A 2 —— —— —— A 3 ∣ A 4 ] [ B 1 ∣ B 2 —— —— —— B 3 ∣ B 4 ] = [ A 1 ∗ B 1 + A 2 ∗ B 3 ∣ A 1 ∗ B 2 + A 2 ∗ B 4 ———————— —— ———————— A 3 ∗ B 1 + A 4 ∗ B 3 ∣ A 3 ∗ B 2 + A 4 ∗ B 4 ] \begin{bmatrix} A_{1}&|&A_{2}\\ ——&——&——\\ A_{3}&|&A_{4} \end{bmatrix} \begin{bmatrix} B_{1}&|&B_{2}\\ ——&——&——\\ B_{3}&|&B_{4} \end{bmatrix} =\begin{bmatrix} A_{1}*B_{1}+A_2*B_{3}&|&A_{1}*B_{2}+A_2*B_{4}\\ ————————&——&————————\\ A_{3}*B_{1}+A_4*B_{3}&|&A_{3}*B_{2}+A_4*B_{4} \end{bmatrix} A1——A3∣——∣A2——A4 B1——B3∣——∣B2——B4 = A1∗B1+A2∗B3————————A3∗B1+A4∗B3∣——∣A1∗B2+A2∗B4————————A3∗B2+A4∗B4