Matrix Power Series
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3 一道比较有意思的水题,水一水更健康!
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
int mod,n,K;
struct Matrix{
int mat[maxn][maxn];
Matrix(){
memset(mat,,sizeof(mat));
} Matrix operator +(Matrix a){
Matrix r;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
(r.mat[i][j]=(mat[i][j]+a.mat[i][j])%mod)%=mod;
return r;
} Matrix operator *(Matrix a){
Matrix r;
for(int i=,s;i<=n;i++)
for(int k=;k<=n;k++){
s=mat[i][k];
for(int j=;j<=n;j++)
(r.mat[i][j]+=(s*a.mat[k][j])%mod)%=mod;
}
return r;
} Matrix operator ^(int k){
Matrix r,x;
for(int i=;i<=n;i++)
r.mat[i][i]=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
x.mat[i][j]=mat[i][j];
while(k){
if(k&)
r=r*x;
k>>=;
x=x*x;
}
return r;
}
}A,B,ans;
Matrix Solve(int k){
if(k==)return A;
if(k%)return A+A*Solve(k-);
else return ((A^(k/))+B)*Solve(k/);
}
int main(){
#ifndef ONLINE_JUDGE
//freopen("","r",stdin);
//freopen("","w",stdout);
#endif
scanf("%d%d%d",&n,&K,&mod);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&A.mat[i][j]); for(int i=;i<=n;i++)
B.mat[i][i]=; ans=Solve(K); for(int i=;i<=n;i++){
for(int j=;j<=n;j++)
printf("%d ",ans.mat[i][j]);
printf("\n");
}
return ;
}