智能指针的作用
C++程序设计中使用堆内存是非常频繁的操作,堆内存的申请和释放都由程序员自己管理。程序员自己管理堆内存可以提高了程序的效率,但是整体来说堆内存的管理是麻烦的,C++11中引入了智能指针的概念,方便管理堆内存。使用普通指针,容易造成堆内存泄露(忘记释放),二次释放,程序发生异常时内存泄露等问题等,使用智能指针能更好的管理堆内存。
理解智能指针需要从下面三个层次:
从较浅的层面看,智能指针是利用了一种叫做RAII(资源获取即初始化)的技术对普通的指针进行封装,这使得智能指针实质是一个对象,行为表现的却像一个指针。
智能指针的作用是防止忘记调用delete释放内存和程序异常的进入catch块忘记释放内存。另外指针的释放时机也是非常有考究的,多次释放同一个指针会造成程序崩溃,这些都可以通过智能指针来解决。
智能指针还有一个作用是把值语义转换成引用语义。C++和Java有一处最大的区别在于语义不同,在Java里面下列代码:
Animal a = new Animal();
Animal b = a;
你当然知道,这里其实只生成了一个对象,a和b仅仅是把持对象的引用而已。但在C++中不是这样,
Animal a;
Animal b = a;
这里却是就是生成了两个对象。
智能指针在C++11版本之后提供,包含在头文件中,shared_ptr、unique_ptr、weak_ptr
智能指针的使用:
shared_ptr的使用
shared_ptr多个指针指向相同的对象。shared_ptr使用引用计数,每一个shared_ptr的拷贝都指向相同的内存。每使用他一次,内部的引用计数加1,每析构一次,内部的引用计数减1,减为0时,自动删除所指向的堆内存。shared_ptr内部的引用计数是线程安全的,但是对象的读取需要加锁。
- 初始化。智能指针是个模板类,可以指定类型,传入指针通过构造函数初始化。也可以使用make_shared函数初始化。不能将指针直接赋值给一个智能指针,一个是类,一个是指针。例如std::shared_ptr
p4 = new int(1);的写法是错误的 - 拷贝和赋值。拷贝使得对象的引用计数增加1,赋值使得原对象引用计数减1,当计数为0时,自动释放内存。后来指向的对象引用计数加1,指向后来的对象。
- get函数获取原始指针
- 注意不要用一个原始指针初始化多个shared_ptr,否则会造成二次释放同一内存。
- 注意避免循环引用,shared_ptr的一个最大的陷阱是循环引用,循环,循环引用会导致堆内存无法正确释放,导致内存泄漏。
#include <iostream>
#include <memory>
using namespace std;
int main()
{
// 使用智能指针管理一块 int 型的堆内存, 内部引用计数为 1
shared_ptr<int> ptr1(new int(520));
cout << "ptr1管理的内存引用计数: " << ptr1.use_count() << endl;
//调用拷贝构造函数
shared_ptr<int> ptr2(ptr1);
cout << "ptr2管理的内存引用计数: " << ptr2.use_count() << endl;
shared_ptr<int> ptr3 = ptr1;
cout << "ptr3管理的内存引用计数: " << ptr3.use_count() << endl;
//调用移动构造函数
shared_ptr<int> ptr4(std::move(ptr1));
cout << "ptr4管理的内存引用计数: " << ptr4.use_count() << endl;
std::shared_ptr<int> ptr5 = std::move(ptr2);
cout << "ptr5管理的内存引用计数: " << ptr5.use_count() << endl;
return 0;
}
ptr1管理的内存引用计数: 1
ptr2管理的内存引用计数: 2
ptr3管理的内存引用计数: 3
ptr4管理的内存引用计数: 3
ptr5管理的内存引用计数: 3
如果使用拷贝的方式初始化共享智能指针对象,这两个对象会同时管理同一块堆内存,堆内存对应的引用计数也会增加;如果使用移动的方式初始智能指针对象,只是转让了内存的所有权,管理内存的对象并不会增加,因此内存的引用计数不会变化。
#include <iostream>
#include <memory>
int main() {
{
int a = 10;
std::shared_ptr<int> ptra = std::make_shared<int>(a);
std::shared_ptr<int> ptra2(ptra); //copy
std::cout << ptra.use_count() << std::endl;
int b = 20;
int *pb = &a;
//std::shared_ptr<int> ptrb = pb; //error
std::shared_ptr<int> ptrb = std::make_shared<int>(b);
ptra2 = ptrb; //assign
pb = ptrb.get(); //获取原始指针
std::cout << ptra.use_count() << std::endl;
std::cout << ptrb.use_count() << std::endl;
}
}
通过 std::make_shared 初始化
#include <iostream>
#include <string>
#include <memory>
using namespace std;
class Test
{
public:
Test()
{
cout << "construct Test..." << endl;
}
Test(int x)
{
cout << "construct Test, x = " << x << endl;
}
Test(string str)
{
cout << "construct Test, str = " << str << endl;
}
~Test()
{
cout << "destruct Test ..." << endl;
}
};
int main()
{
// 使用智能指针管理一块 int 型的堆内存, 内部引用计数为 1
shared_ptr<int> ptr1 = make_shared<int>(520);
cout << "ptr1管理的内存引用计数: " << ptr1.use_count() << endl;
shared_ptr<Test> ptr2 = make_shared<Test>();
cout << "ptr2管理的内存引用计数: " << ptr2.use_count() << endl;
shared_ptr<Test> ptr3 = make_shared<Test>(520);
cout << "ptr3管理的内存引用计数: " << ptr3.use_count() << endl;
shared_ptr<Test> ptr4 = make_shared<Test>("我是要成为海贼王的男人!!!");
cout << "ptr4管理的内存引用计数: " << ptr4.use_count() << endl;
return 0;
}
通过 reset 方法初始化
#include <iostream>
#include <string>
#include <memory>
using namespace std;
int main()
{
// 使用智能指针管理一块 int 型的堆内存, 内部引用计数为 1
shared_ptr<int> ptr1 = make_shared<int>(520);
shared_ptr<int> ptr2 = ptr1;
shared_ptr<int> ptr3 = ptr1;
shared_ptr<int> ptr4 = ptr1;
cout << "ptr1管理的内存引用计数: " << ptr1.use_count() << endl;
cout << "ptr2管理的内存引用计数: " << ptr2.use_count() << endl;
cout << "ptr3管理的内存引用计数: " << ptr3.use_count() << endl;
cout << "ptr4管理的内存引用计数: " << ptr4.use_count() << endl;
ptr4.reset();
cout << "ptr1管理的内存引用计数: " << ptr1.use_count() << endl;
cout << "ptr2管理的内存引用计数: " << ptr2.use_count() << endl;
cout << "ptr3管理的内存引用计数: " << ptr3.use_count() << endl;
cout << "ptr4管理的内存引用计数: " << ptr4.use_count() << endl;
shared_ptr<int> ptr5;
ptr5.reset(new int(250));
cout << "ptr5管理的内存引用计数: " << ptr5.use_count() << endl;
return 0;
}
ptr1管理的内存引用计数: 4
ptr2管理的内存引用计数: 4
ptr3管理的内存引用计数: 4
ptr4管理的内存引用计数: 4
ptr1管理的内存引用计数: 3
ptr2管理的内存引用计数: 3
ptr3管理的内存引用计数: 3
ptr4管理的内存引用计数: 0
ptr5管理的内存引用计数: 1
对于一个未初始化的共享智能指针,可以通过 reset 方法来初始化,当智能指针中有值的时候,调用 reset 会使引用计数减 1。
获取原始指针
对应基础数据类型来说,通过操作智能指针和操作智能指针管理的内存效果是一样的,可以直接完成数据的读写。但是如果共享智能指针管理的是一个对象,那么就需要取出原始内存的地址再操作,可以调用共享智能指针类提供的 get () 方法得到原始地址,其函数原型如下:
T* get() const noexcept;
#include <iostream>
#include <string>
#include <memory>
using namespace std;
int main()
{
int len = 128;
shared_ptr<char> ptr(new char[len]);
// 得到指针的原始地址
char* add = ptr.get();
memset(add, 0, len);
strcpy(add, "我是要成为海贼王的男人!!!");
cout << "string: " << add << endl;
shared_ptr<int> p(new int);
*p = 100;
cout << *p.get() << " " << *p << endl;
return 0;
}
指定删除器
当智能指针管理的内存对应的引用计数变为 0 的时候,这块内存就会被智能指针析构掉了。另外,我们在初始化智能指针的时候也可以自己指定删除动作,这个删除操作对应的函数被称之为删除器,这个删除器函数本质是一个回调函数,我们只需要进行实现,其调用是由智能指针完成的。
#include <iostream>
#include <memory>
using namespace std;
// 自定义删除器函数,释放int型内存
void deleteIntPtr(int* p)
{
delete p;
cout << "int 型内存被释放了...";
}
int main()
{
shared_ptr<int> ptr(new int(250), deleteIntPtr);
return 0;
}
在 C++11 中使用 shared_ptr 管理动态数组时,需要指定删除器,因为 std::shared_ptr的默认删除器不支持数组对象,具体的处理代码如下:
int main()
{
shared_ptr<int> ptr(new int[10], [](int* p) {delete[]p; });
return 0;
}
另外,我们还可以自己封装一个 make_shared_array 方法来让 shared_ptr 支持数组,代码如下:
#include <iostream>
#include <memory>
using namespace std;
template <typename T>
shared_ptr<T> make_share_array(size_t size)
{
// 返回匿名对象
return shared_ptr<T>(new T[size], default_delete<T[]>());
}
int main()
{
shared_ptr<int> ptr1 = make_share_array<int>(10);
cout << ptr1.use_count() << endl;
shared_ptr<char> ptr2 = make_share_array<char>(128);
cout << ptr2.use_count() << endl;
return 0;
}
unique_ptr的使用
unique_ptr“唯一”拥有其所指对象,同一时刻只能有一个unique_ptr指向给定对象(通过禁止拷贝语义、只有移动语义来实现)。相比与原始指针unique_ptr用于其RAII的特性,使得在出现异常的情况下,动态资源能得到释放。unique_ptr指针本身的生命周期:从unique_ptr指针创建时开始,直到离开作用域。离开作用域时,若其指向对象,则将其所指对象销毁(默认使用delete操作符,用户可指定其他操作)。unique_ptr指针与其所指对象的关系:在智能指针生命周期内,可以改变智能指针所指对象,如创建智能指针时通过构造函数指定、通过reset方法重新指定、通过release方法释放所有权、通过移动语义转移所有权。
#include <iostream>
#include <memory>
int main() {
{
std::unique_ptr<int> uptr(new int(10)); //绑定动态对象
//std::unique_ptr<int> uptr2 = uptr; //不能賦值
//std::unique_ptr<int> uptr2(uptr); //不能拷貝
std::unique_ptr<int> uptr2 = std::move(uptr); //轉換所有權
uptr2.release(); //释放所有权
}
//超過uptr的作用域,內存釋放
}
weak_ptr的使用
weak_ptr是为了配合shared_ptr而引入的一种智能指针,因为它不具有普通指针的行为,没有重载operator*和->,它的最大作用在于协助shared_ptr工作,像旁观者那样观测资源的使用情况。weak_ptr可以从一个shared_ptr或者另一个weak_ptr对象构造,获得资源的观测权。但weak_ptr没有共享资源,它的构造不会引起指针引用计数的增加。使用weak_ptr的成员函数use_count()可以观测资源的引用计数,另一个成员函数expired()的功能等价于use_count()==0,但更快,表示被观测的资源(也就是shared_ptr的管理的资源)已经不复存在。weak_ptr可以使用一个非常重要的成员函数lock()从被观测的shared_ptr获得一个可用的shared_ptr对象, 从而操作资源。但当expired()==true的时候,lock()函数将返回一个存储空指针的shared_ptr
#include <iostream>
#include <memory>
int main() {
{
std::shared_ptr<int> sh_ptr = std::make_shared<int>(10);
std::cout << sh_ptr.use_count() << std::endl;
std::weak_ptr<int> wp(sh_ptr);
std::cout << wp.use_count() << std::endl;
if(!wp.expired()){
std::shared_ptr<int> sh_ptr2 = wp.lock(); //get another shared_ptr
*sh_ptr = 100;
std::cout << wp.use_count() << std::endl;
}
}
//delete memory
}
#include <iostream>
#include <memory>
using namespace std;
int main()
{
shared_ptr<int> sp(new int);
weak_ptr<int> wp1;
weak_ptr<int> wp2(wp1);
weak_ptr<int> wp3(sp);
weak_ptr<int> wp4;
wp4 = sp;
weak_ptr<int> wp5;
wp5 = wp3;
cout << "use_count: " << endl;
cout << "wp1: " << wp1.use_count() << endl;
cout << "wp2: " << wp2.use_count() << endl;
cout << "wp3: " << wp3.use_count() << endl;
cout << "wp4: " << wp4.use_count() << endl;
cout << "wp5: " << wp5.use_count() << endl;
return 0;
}
use_count:
wp1: 0
wp2: 0
wp3: 1
wp4: 1
wp5: 1
通过打印的结果可以知道,虽然弱引用智能指针 wp3、wp4、wp5 监测的资源是同一个,但是它的引用计数并没有发生任何的变化,也进一步证明了 weak_ptr只是监测资源,并不管理资源。
#include <iostream>
#include <memory>
using namespace std;
int main()
{
shared_ptr<int> sp1, sp2;
weak_ptr<int> wp;
sp1 = std::make_shared<int>(520);
wp = sp1;
sp2 = wp.lock();
cout << "use_count: " << wp.use_count() << endl;
sp1.reset();
cout << "use_count: " << wp.use_count() << endl;
sp1 = wp.lock();
cout << "use_count: " << wp.use_count() << endl;
cout << "*sp1: " << *sp1 << endl;
cout << "*sp2: " << *sp2 << endl;
return 0;
}
use_count: 2
use_count: 1
use_count: 2
*sp1: 520
*sp2: 520
- sp2 = (); 通过调用 lock() 方法得到一个用于管理 weak_ptr
对象所监测的资源的共享智能指针对象,使用这个对象初始化 sp2,此时所监测资源的引用计数为 2 - (); 共享智能指针 sp1 被重置,weak_ptr 对象所监测的资源的引用计数减 1
- sp1 = ();sp1 重新被初始化,并且管理的还是 weak_ptr 对象所监测的资源,因此引用计数加 1
- 共享智能指针对象 sp1 和 sp2 管理的是同一块内存,因此最终打印的内存中的结果是相同的,都是 520
解决循环引用问题
考虑一个简单的对象建模——家长与子女:a Parent has a Child, a Child knowshis/her Parent。在Java 里边很好写,不用担心内存泄漏,也不用担心空悬指针,只要正确初始化myChild 和myParent,那么Java 程序员就不用担心出现访问错误。一个handle 是否有效,只需要判断其是否non null。
public class Parent
{
private Child myChild;
}
public class Child
{
private Parent myParent;
}
在C++ 里边就要为资源管理费一番脑筋。如果使用原始指针作为成员,Child和Parent由谁释放?那么如何保证指针的有效性?如何防止出现空悬指针?这些问题是C++面向对象编程麻烦的问题,现在可以借助smart pointer把对象语义(pointer)转变为值(value)语义,shared_ptr轻松解决生命周期的问题,不必担心空悬指针。但是这个模型存在循环引用的问题,注意其中一个指针应该为weak_ptr。
原始指针的做法,容易出错:
#include <iostream>
#include <memory>
class Child;
class Parent;
class Parent {
private:
Child* myChild;
public:
void setChild(Child* ch) {
this->myChild = ch;
}
void doSomething() {
if (this->myChild) {
}
}
~Parent() {
delete myChild;
}
};
class Child {
private:
Parent* myParent;
public:
void setPartent(Parent* p) {
this->myParent = p;
}
void doSomething() {
if (this->myParent) {
}
}
~Child() {
delete myParent;
}
};
int main() {
{
Parent* p = new Parent;
Child* c = new Child;
p->setChild(c);
c->setPartent(p);
delete c; //only delete one
}
return 0;
}
智能指针循环引用内存泄露的问题:
#include <iostream>
#include <memory>
class Child;
class Parent;
class Parent {
private:
std::shared_ptr<Child> ChildPtr;
public:
void setChild(std::shared_ptr<Child> child) {
this->ChildPtr = child;
}
void doSomething() {
if (this->ChildPtr.use_count()) {
}
}
~Parent() {
}
};
class Child {
private:
std::shared_ptr<Parent> ParentPtr;
public:
void setPartent(std::shared_ptr<Parent> parent) {
this->ParentPtr = parent;
}
void doSomething() {
if (this->ParentPtr.use_count()) {
}
}
~Child() {
}
};
int main() {
std::weak_ptr<Parent> wpp;
std::weak_ptr<Child> wpc;
{
std::shared_ptr<Parent> p(new Parent);
std::shared_ptr<Child> c(new Child);
p->setChild(c);
c->setPartent(p);
wpp = p;
wpc = c;
std::cout << p.use_count() << std::endl; // 2
std::cout << c.use_count() << std::endl; // 2
}
std::cout << wpp.use_count() << std::endl; // 1
std::cout << wpc.use_count() << std::endl; // 1
return 0;
}
智能指针正确的做法:
#include <iostream>
#include <memory>
class Child;
class Parent;
class Parent {
private:
//std::shared_ptr<Child> ChildPtr;
std::weak_ptr<Child> ChildPtr;
public:
void setChild(std::shared_ptr<Child> child) {
this->ChildPtr = child;
}
void doSomething() {
//new shared_ptr
if (this->ChildPtr.lock()) {
}
}
~Parent() {
}
};
class Child {
private:
std::shared_ptr<Parent> ParentPtr;
public:
void setPartent(std::shared_ptr<Parent> parent) {
this->ParentPtr = parent;
}
void doSomething() {
if (this->ParentPtr.use_count()) {
}
}
~Child() {
}
};
int main() {
std::weak_ptr<Parent> wpp;
std::weak_ptr<Child> wpc;
{
std::shared_ptr<Parent> p(new Parent);
std::shared_ptr<Child> c(new Child);
p->setChild(c);
c->setPartent(p);
wpp = p;
wpc = c;
std::cout << p.use_count() << std::endl; // 2
std::cout << c.use_count() << std::endl; // 1
}
std::cout << wpp.use_count() << std::endl; // 0
std::cout << wpc.use_count() << std::endl; // 0
return 0;
}
智能指针的设计和实现
下面是一个简单智能指针的demo。智能指针类将一个计数器与类指向的对象相关联,引用计数跟踪该类有多少个对象共享同一指针。每次创建类的新对象时,初始化指针并将引用计数置为1;当对象作为另一对象的副本而创建时,拷贝构造函数拷贝指针并增加与之相应的引用计数;对一个对象进行赋值时,赋值操作符减少左操作数所指对象的引用计数(如果引用计数为减至0,则删除对象),并增加右操作数所指对象的引用计数;调用析构函数时,构造函数减少引用计数(如果引用计数减至0,则删除基础对象)。智能指针就是模拟指针动作的类。所有的智能指针都会重载 -> 和 * 操作符。智能指针还有许多其他功能,比较有用的是自动销毁。这主要是利用栈对象的有限作用域以及临时对象(有限作用域实现)析构函数释放内存。
#include <iostream>
#include <memory>
template<typename T>
class SmartPointer {
private:
T* _ptr;
size_t* _count;
public:
SmartPointer(T* ptr = nullptr) :
_ptr(ptr) {
if (_ptr) {
_count = new size_t(1);
} else {
_count = new size_t(0);
}
}
SmartPointer(const SmartPointer& ptr) {
if (this != &ptr) {
this->_ptr = ptr._ptr;
this->_count = ptr._count;
(*this->_count)++;
}
}
SmartPointer& operator=(const SmartPointer& ptr) {
if (this->_ptr == ptr._ptr) {
return *this;
}
if (this->_ptr) {
(*this->_count)--;
if (this->_count == 0) {
delete this->_ptr;
delete this->_count;
}
}
this->_ptr = ptr._ptr;
this->_count = ptr._count;
(*this->_count)++;
return *this;
}
T& operator*() {
assert(this->_ptr == nullptr);
return *(this->_ptr);
}
T* operator->() {
assert(this->_ptr == nullptr);
return this->_ptr;
}
~SmartPointer() {
(*this->_count)--;
if (*this->_count == 0) {
delete this->_ptr;
delete this->_count;
}
}
size_t use_count(){
return *this->_count;
}
};
int main() {
{
SmartPointer<int> sp(new int(10));
SmartPointer<int> sp2(sp);
SmartPointer<int> sp3(new int(20));
sp2 = sp3;
std::cout << sp.use_count() << std::endl;
std::cout << sp3.use_count() << std::endl;
}
//delete operator
}