单例设计模式八种方式(代码详细讲解)

时间:2024-10-13 10:22:40

单例设计模式八种方式

  • 1、饿汉式(静态常量)
  • 2、 饿汉式(静态代码块)
  • 3、懒汉式(线程不安全)
  • 4、 懒汉式(线程安全,同步方法)
  • 5、 懒汉式(线程安全,同步代码块)
  • 6、 双重检查
  • 7、 静态内部类
  • 8、 枚举
  • 9、 单例模式在 JDK 应用的源码分析
    • 1) 单例模式在 JDK 应用的源码分析
    • 2) 单例模式注意事项和细节说明

1、饿汉式(静态常量)

饿汉式(静态常量)应用实例
步骤如下:

  1. 构造器私有化 (防止 new )
  2. 类的内部创建对象
  3. 向外暴露一个静态的公共方法。getInstance
  4. 代码实现

public class SingletonTest01 {
public static void main(String[] args) {
//测试
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
System.out.println("=" + instance.hashCode());
System.out.println("=" + instance2.hashCode());
}
}
//饿汉式(静态变量)
class Singleton {
//1. 构造器私有化, 外部能 new
private Singleton() {

}
//2.本类内部创建对象实例
private final static Singleton instance = new Singleton();
//3. 提供一个公有的静态方法,返回实例对象
public static Singleton getInstance() {
return instance;
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

优缺点说明:

  1. 优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
  2. 缺点:在类装载的时候就完成实例化,没有达到 Lazy Loading 的效果。如果从始至终从未使用过这个实例,则
    会造成内存的浪费
  3. 这种方式基于 classloder 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,在单例模式中大
    多数都是调用 getInstance 方法,但是导致类装载的原因有很多种,因此不能确定有其他的方式(或者其他的静
    态方法)导致类装载,这时候初始化 instance 就没有达到 lazy loading 的效果
  4. 结论:这种单例模式可用,可能造成内存浪费

2、 饿汉式(静态代码块)

 代码演示:

public class SingletonTest02 {
public static void main(String[] args) {
//测试
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
System.out.println("=" + instance.hashCode());
System.out.println("=" + instance2.hashCode());
}
}
//饿汉式(静态变量)
class Singleton {
//1. 构造器私有化, 外部能 new
private Singleton() {
}
//2.本类内部创建对象实例

private static Singleton instance;
static { // 在静态代码块中,创建单例对象
instance = new Singleton();
}
//3. 提供一个公有的静态方法,返回实例对象
public static Singleton getInstance() {
return instance;
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

优缺点说明:

  1. 这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执
    行静态代码块中的代码,初始化类的实例。优缺点和上面是一样的。
  2. 结论:这种单例模式可用,但是可能造成内存浪费

3、懒汉式(线程不安全)

代码演示:


public class SingletonTest03 {
public static void main(String[] args) {
System.out.println("懒汉式 1 , 线程不安全~");
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
System.out.println("=" + instance.hashCode());
System.out.println("=" + instance2.hashCode());
}
}
class Singleton {
private static Singleton instance;
private Singleton() {}
//提供一个静态的公有方法,当使用到该方法时,才去创建 instance
//即懒汉式
public static Singleton getInstance() {
if(instance == null) {
instance = new Singleton();
}
return instance;
}
}


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

优缺点说明:

  1. 起到了 Lazy Loading 的效果,但是只能在单线程下使用。
  2. 如果在多线程下,一个线程进入了 if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过
    了这个判断语句,这时便会 产生多个实例。所以在多线程环境下不可使用这种方式
  3. 结论:在实际开发中, 不要使用这种方式.

4、 懒汉式(线程安全,同步方法)

代码演示:



public class SingletonTest04 {
public static void main(String[] args) {
System.out.println("懒汉式 2 , 线程安全~");
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
System.out.println("=" + instance.hashCode());
System.out.println("=" + instance2.hashCode());
}
}

// 懒汉式(线程安全,同步方法)
class Singleton {
private static Singleton instance;
private Singleton() {}
//提供一个静态的公有方法,加入同步处理的代码,解决线程安全问题
//即懒汉式
public static synchronized Singleton getInstance() {
if(instance == null) {
instance = new Singleton();
}
return instance;
}
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

优缺点说明:

  1. 解决了 线程安全问题
  2. 效率太低了,每个线程在想获得类的实例时候,执行 getInstance()方法都要进行同步。而其实这个方法只执行
    一次实例化代码就够了,后面的想获得该类实例,直接 return 就行了。 方法进行同步效率太低
  3. 结论:在实际开发中, 不推荐使用这种方式

5、 懒汉式(线程安全,同步代码块)

在这里插入图片描述
不推荐使用

6、 双重检查

代码演示


public class SingletonTest06 {
public static void main(String[] args) {
System.out.println("双重检查");
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
System.out.println("=" + instance.hashCode());
System.out.println("=" + instance2.hashCode());

}
}
// 懒汉式(线程安全,同步方法)
class Singleton {
private static volatile Singleton instance;
private Singleton() {}
//提供一个静态的公有方法,加入双重检查代码,解决线程安全问题, 同时解决懒加载问题
//同时保证了效率, 推荐使用
public static synchronized Singleton getInstance() {
if(instance == null) {
synchronized (Singleton.class) {
if(instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

优缺点说明:

  1. Double-Check 概念是多线程开发中常使用到的,如代码中所示,我们进行了两次 if (singleton == null)检查,这
    样就可以保证线程安全了。
  2. 这样,实例化代码只用执行一次,后面再次访问时,判断 if (singleton == null),直接 return 实例化对象,也避
    免的反复进行方法同步.
  3. 线程安全; 延迟加载; 效率较高
  4. 结论:在实际开发中, 推荐使用这种单例设计模式

7、 静态内部类

代码演示:


public class SingletonTest07 {
public static void main(String[] args) {
System.out.println("使用静态内部类完成单例模式");
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
System.out.println("=" + instance.hashCode());
System.out.println("=" + instance2.hashCode());
}
}
// 静态内部类完成, 推荐使用
class Singleton {
private static volatile Singleton instance;
//构造器私有化
private Singleton() {}
//写一个静态内部类,该类中有一个静态属性 Singleton
private static class SingletonInstance {
private static final Singleton INSTANCE = new Singleton();
}
//提供一个静态的公有方法,直接返回 
public static synchronized Singleton getInstance() {
return SingletonInstance.INSTANCE;
}
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

优缺点说明:

  1. 这种方式采用了类装载的机制来保证初始化实例时只有一个线程。
  2. 静态内部类方式在 Singleton 类被装载时并不会立即实例化,而是在需要实例化时,调用 getInstance 方法,才
    会装载 SingletonInstance 类,从而完成 Singleton 的实例化。
  3. 类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM 帮助我们保证了线程的安全性,在类进行
    初始化时,别的线程是无法进入的。
  4. 优点: 避免了线程不安全,利用 静态内部类特点实现延迟加载,效率高
  5. 结论: 推荐使用.

8、 枚举

代码演示


public class SingletonTest08 {
public static void main(String[] args) {
Singleton instance = Singleton.INSTANCE;
Singleton instance2 = Singleton.INSTANCE;
System.out.println(instance == instance2);
System.out.println(instance.hashCode());
System.out.println(instance2.hashCode());
instance.sayOK();
}
}
//使用枚举,可以实现单例, 推荐
enum Singleton {
INSTANCE; //属性
public void sayOK() {
System.out.println("ok~");
}
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

优缺点说明:

  1. 这借助 JDK1.5 中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建
    新的对象。
  2. 这种方式是 Effective Java 作者 Josh Bloch 提倡的方式
  3. 结论: 推荐使用

9、 单例模式在 JDK 应用的源码分析

1) 单例模式在 JDK 应用的源码分析

  1. 我们 JDK 中, 就是经典的单例模式(饿汉式)
  2. 代码分析+Debug 源码+代码说明

2) 单例模式注意事项和细节说明

  1. 单例模式保证了 系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使
    用单例模式可以提高系统性能
  2. 当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用 new
  3. 单例模式 使用的场景:需要 频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多(即:重量级
    对象),但又经常用到的对象、 工具类对象、频繁访问数据库或文件的对象(比如 数据源、session 工厂等)