HDU 5829 Rikka with Subset

时间:2022-10-28 12:17:08

快速数论变换ntt。

早上才刚刚接触了一下FFT,然后就开始撸这题了,所以要详细地记录一下。

看了这篇巨巨的博客才慢慢领会的:http://blog.csdn.net/cqu_hyx/article/details/52194696

FFT的作用是计算卷积。可以简单的理解为计算多项式*多项式最后得到的多项式,暴力计算是O(n*n)的,FFT可以做到O(nlogn)。

HDU 5829 Rikka with Subset

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c = getchar(); x = ;while(!isdigit(c)) c = getchar();
while(isdigit(c)) { x = x * + c - ''; c = getchar(); }
} const int maxn=;
const LL mod=;
const LL G=; LL t[maxn],a[maxn],b[maxn],c[maxn],f[maxn],fac[maxn],NI[maxn];
int T,n,m;
LL rev[maxn],N,len,inv; LL POW[maxn],NiPOW[maxn]; LL power(LL x,LL y)
{
LL res=;
for(;y;y>>=,x=(x*x)%mod)
{
if(y&)res=(res*x)%mod;
}
return res;
} void init()
{
while((n+m)>=(<<len))len++;
N=(<<len);
inv=power(N,mod-);
for(int i=;i<N;i++)
{
LL pos=;
LL temp=i;
for(int j=;j<=len;j++)
{
pos<<=;pos |= temp&;temp>>=;
}
rev[i]=pos;
}
} void ntt(LL *a,LL n,LL re)
{
for(int i=;i<n;i++)
{
if(rev[i]>i)
{
swap(a[i],a[rev[i]]);
}
}
for(int i=;i<=n;i<<=)
{
int mid=i>>; LL wn=power(G,(mod-)/i);
if(re) wn=power(wn,(mod-));
for(int j=;j<n;j+=i)
{
LL w=;
for(int k=;k<mid;k++)
{
int temp1=a[j+k];
int temp2=(LL)a[j+k+mid]*w%mod;
a[j+k]=(temp1+temp2);if(a[j+k]>=mod)a[j+k]-=mod;
a[j+k+mid]=(temp1-temp2);if(a[j+k+mid]<)a[j+k+mid]+=mod;
w=(LL)w*wn%mod;
}
}
}
if(re)
{
for(int i=;i<n;i++)
{
a[i]=(LL)a[i]*inv%mod;
}
}
} bool cmp(LL a,LL b) {return a>b;} LL extend_gcd(LL a,LL b,LL &x,LL &y)
{
if(a==&&b==) return -;
if(b==){x=;y=;return a;}
LL d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
} LL mod_reverse(LL a,LL n)
{
LL x,y;
LL d=extend_gcd(a,n,x,y);
if(d==) return (x%n+n)%n;
else return -;
} int main()
{
fac[]=; for(int i=;i<=;i++) fac[i]=(LL)i*fac[i-]%mod;
for(int i=;i<=;i++) NI[i]=mod_reverse(fac[i],mod);
POW[]=; for(int i=;i<=;i++) POW[i]=(LL)*POW[i-]%mod;
for(int i=;i<=;i++) NiPOW[i]=mod_reverse(POW[i],mod); scanf("%d",&T); while(T--)
{
len=; memset(c,,sizeof c); memset(a,,sizeof a); memset(b,,sizeof b); scanf("%d",&n); m=n;
for(int i=;i<=n;i++) { int x; scanf("%d",&x); t[i]=(LL)x; } sort(t+,t++n,cmp);
for(int i=;i<n;i++)
{
LL x=fac[n]*NI[i]%mod;
a[i]=x*POW[n-i]%mod;
}
for(int i=;i<=n;i++) b[n-i]=t[i]*fac[i-]%mod; init(); ntt(a,N,); ntt(b,N,);
for(int i=;i<=N;i++) c[i]=a[i]*b[i]%mod;
ntt(c,N,); for(int i=;i<n;i++) f[n-i]=c[i]*NI[n]%mod;
for(int i=;i<=n;i++) f[i]=f[i]*NI[i-]%mod;
for(int i=;i<=n;i++) f[i]=f[i]*NiPOW[i]%mod;
LL ans=; for(int i=;i<=n;i++) { ans=(ans+f[i])%mod; printf("%lld ",ans); }
printf("\n");
}
return ;
}