我就废话不多说了,大家还是直接看代码吧~
1
2
3
4
5
6
7
|
from numpy as np
index = np.arange( 2000 )
np.random.shuffle(index)
print (index[ 0 : 20 ])
X_train = X_train[index,:,:,:] #X_train是训练集,y_train是训练标签
y_train = y_train[index]
|
补充知识:Keras中shuffle和validation_split的顺序
模型的fit函数有两个参数,shuffle用于将数据打乱,validation_split用于在没有提供验证集的时候,按一定比例从训练集中取出一部分作为验证集
这里有个陷阱是,程序是先执行validation_split,再执行shuffle的,
所以会出现这种情况:
假如你的训练集是有序的,比方说正样本在前负样本在后,又设置了validation_split,那么你的验证集中很可能将全部是负样本
同样的,这个东西不会有任何错误报出来,因为Keras不可能知道你的数据有没有经过shuffle,保险起见如果你的数据是没shuffle过的,最好手动shuffle一下
np.random.seed(1024) random.shuffle(index) data = data[index] label = label[index] splitpoint = int(round(num * 0.8)) (X_train, X_val) = (data[0:splitpoint], data[splitpoint:]) (Y_train, Y_val) = (label[0:splitpoint], label[splitpoint:]) X_train=X_train/255 X_val=X_val/255
以上这篇在Keras中利用np.random.shuffle()打乱数据集实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_25964837/article/details/79038635