ObjFunction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
import math
def GrieFunc(vardim, x, bound):
"""
Griewangk function
"""
s1 = 0.
s2 = 1.
for i in range ( 1 , vardim + 1 ):
s1 = s1 + x[i - 1 ] * * 2
s2 = s2 * math.cos(x[i - 1 ] / math.sqrt(i))
y = ( 1. / 4000. ) * s1 - s2 + 1
y = 1. / ( 1. + y)
return y
def RastFunc(vardim, x, bound):
"""
Rastrigin function
"""
s = 10 * 25
for i in range ( 1 , vardim + 1 ):
s = s + x[i - 1 ] * * 2 - 10 * math.cos( 2 * math.pi * x[i - 1 ])
return s
|
GAIndividual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
import numpy as np
import ObjFunction
class GAIndividual:
'''
individual of genetic algorithm
'''
def __init__( self , vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self .vardim = vardim
self .bound = bound
self .fitness = 0.
def generate( self ):
'''
generate a random chromsome for genetic algorithm
'''
len = self .vardim
rnd = np.random.random(size = len )
self .chrom = np.zeros( len )
for i in xrange ( 0 , len ):
self .chrom[i] = self .bound[ 0 , i] + \
( self .bound[ 1 , i] - self .bound[ 0 , i]) * rnd[i]
def calculateFitness( self ):
'''
calculate the fitness of the chromsome
'''
self .fitness = ObjFunction.GrieFunc(
self .vardim, self .chrom, self .bound)
|
GeneticAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
import numpy as np
from GAIndividual import GAIndividual
import random
import copy
import matplotlib.pyplot as plt
class GeneticAlgorithm:
'''
The class for genetic algorithm
'''
def __init__( self , sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
param: algorithm required parameters, it is a list which is consisting of crossover rate, mutation rate, alpha
'''
self .sizepop = sizepop
self .MAXGEN = MAXGEN
self .vardim = vardim
self .bound = bound
self .population = []
self .fitness = np.zeros(( self .sizepop, 1 ))
self .trace = np.zeros(( self .MAXGEN, 2 ))
self .params = params
def initialize( self ):
'''
initialize the population
'''
for i in xrange ( 0 , self .sizepop):
ind = GAIndividual( self .vardim, self .bound)
ind.generate()
self .population.append(ind)
def evaluate( self ):
'''
evaluation of the population fitnesses
'''
for i in xrange ( 0 , self .sizepop):
self .population[i].calculateFitness()
self .fitness[i] = self .population[i].fitness
def solve( self ):
'''
evolution process of genetic algorithm
'''
self .t = 0
self .initialize()
self .evaluate()
best = np. max ( self .fitness)
bestIndex = np.argmax( self .fitness)
self .best = copy.deepcopy( self .population[bestIndex])
self .avefitness = np.mean( self .fitness)
self .trace[ self .t, 0 ] = ( 1 - self .best.fitness) / self .best.fitness
self .trace[ self .t, 1 ] = ( 1 - self .avefitness) / self .avefitness
print ( "Generation %d: optimal function value is: %f; average function value is %f" % (
self .t, self .trace[ self .t, 0 ], self .trace[ self .t, 1 ]))
while ( self .t < self .MAXGEN - 1 ):
self .t + = 1
self .selectionOperation()
self .crossoverOperation()
self .mutationOperation()
self .evaluate()
best = np. max ( self .fitness)
bestIndex = np.argmax( self .fitness)
if best > self .best.fitness:
self .best = copy.deepcopy( self .population[bestIndex])
self .avefitness = np.mean( self .fitness)
self .trace[ self .t, 0 ] = ( 1 - self .best.fitness) / self .best.fitness
self .trace[ self .t, 1 ] = ( 1 - self .avefitness) / self .avefitness
print ( "Generation %d: optimal function value is: %f; average function value is %f" % (
self .t, self .trace[ self .t, 0 ], self .trace[ self .t, 1 ]))
print ( "Optimal function value is: %f; " %
self .trace[ self .t, 0 ])
print "Optimal solution is:"
print self .best.chrom
self .printResult()
def selectionOperation( self ):
'''
selection operation for Genetic Algorithm
'''
newpop = []
totalFitness = np. sum ( self .fitness)
accuFitness = np.zeros(( self .sizepop, 1 ))
sum1 = 0.
for i in xrange ( 0 , self .sizepop):
accuFitness[i] = sum1 + self .fitness[i] / totalFitness
sum1 = accuFitness[i]
for i in xrange ( 0 , self .sizepop):
r = random.random()
idx = 0
for j in xrange ( 0 , self .sizepop - 1 ):
if j = = 0 and r < accuFitness[j]:
idx = 0
break
elif r > = accuFitness[j] and r < accuFitness[j + 1 ]:
idx = j + 1
break
newpop.append( self .population[idx])
self .population = newpop
def crossoverOperation( self ):
'''
crossover operation for genetic algorithm
'''
newpop = []
for i in xrange ( 0 , self .sizepop, 2 ):
idx1 = random.randint( 0 , self .sizepop - 1 )
idx2 = random.randint( 0 , self .sizepop - 1 )
while idx2 = = idx1:
idx2 = random.randint( 0 , self .sizepop - 1 )
newpop.append(copy.deepcopy( self .population[idx1]))
newpop.append(copy.deepcopy( self .population[idx2]))
r = random.random()
if r < self .params[ 0 ]:
crossPos = random.randint( 1 , self .vardim - 1 )
for j in xrange (crossPos, self .vardim):
newpop[i].chrom[j] = newpop[i].chrom[
j] * self .params[ 2 ] + ( 1 - self .params[ 2 ]) * newpop[i + 1 ].chrom[j]
newpop[i + 1 ].chrom[j] = newpop[i + 1 ].chrom[j] * self .params[ 2 ] + \
( 1 - self .params[ 2 ]) * newpop[i].chrom[j]
self .population = newpop
def mutationOperation( self ):
'''
mutation operation for genetic algorithm
'''
newpop = []
for i in xrange ( 0 , self .sizepop):
newpop.append(copy.deepcopy( self .population[i]))
r = random.random()
if r < self .params[ 1 ]:
mutatePos = random.randint( 0 , self .vardim - 1 )
theta = random.random()
if theta > 0.5 :
newpop[i].chrom[mutatePos] = newpop[i].chrom[
mutatePos] - (newpop[i].chrom[mutatePos] - self .bound[ 0 , mutatePos]) * ( 1 - random.random() * * ( 1 - self .t / self .MAXGEN))
else :
newpop[i].chrom[mutatePos] = newpop[i].chrom[
mutatePos] + ( self .bound[ 1 , mutatePos] - newpop[i].chrom[mutatePos]) * ( 1 - random.random() * * ( 1 - self .t / self .MAXGEN))
self .population = newpop
def printResult( self ):
'''
plot the result of the genetic algorithm
'''
x = np.arange( 0 , self .MAXGEN)
y1 = self .trace[:, 0 ]
y2 = self .trace[:, 1 ]
plt.plot(x, y1, 'r' , label = 'optimal value' )
plt.plot(x, y2, 'g' , label = 'average value' )
plt.xlabel( "Iteration" )
plt.ylabel( "function value" )
plt.title( "Genetic algorithm for function optimization" )
plt.legend()
plt.show()
|
运行程序:
1
2
3
4
5
|
if __name__ = = "__main__" :
bound = np.tile([[ - 600 ], [ 600 ]], 25 )
ga = GA( 60 , 25 , bound, 1000 , [ 0.9 , 0.1 , 0.5 ])
ga.solve()
|
作者:Alex Yu
出处:http://www.cnblogs.com/biaoyu/
以上就是python实现简单遗传算法的详细内容,更多关于python 遗传算法的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/biaoyu/p/4857881.html