2.3 Characterizations of invertible matrices (可逆矩阵的特征)

时间:2024-04-04 09:08:56

本文为《Linear algebra and its applications》的读书笔记

The Invertible Matrix Theorem 可逆矩阵定理

THEOREM 8
2.3 Characterizations of invertible matrices (可逆矩阵的特征)

AA2×22\times2 矩阵时,(e)(e) 可以较快的判定矩阵是否为可逆矩阵 (或者计算 adbcad-bc)

PROOF
上面的几个结论基本在前面都介绍过了,这里只是总结了一下。唯一没有出现过的就是 (l)(l)。下面只证明 (a)(l)(a)\Leftrightarrow (l)
(AT)1=(A1)T(a)(l)(A)1=((AT)1)T(l)(a)\because (A^T)^{-1}=(A^{-1})^T \\\therefore (a) \Rightarrow (l) \\\because (A)^{-1}=(({A^T})^{-1})^T \\\therefore (l) \Rightarrow (a)

The next fact follows from Theorem 8
2.3 Characterizations of invertible matrices (可逆矩阵的特征)

由定理 88(j)(k)(j)(k) 可以得到上述推论

The Invertible Matrix Theorem divides the set of all n×nn \times n matrices into two disjoint (不相交的) classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.

Each statement in the theorem describes a property of every n×nn \times n invertible matrix. The negation of a statement (否命题) in the theorem describes a property of every n×nn \times n singular matrix. For instance, an n×nn \times n singular matrix is not row equivalent to InI_n, does not have nn pivot positions, and has linearly dependent columns.

The Invertible Matrix Theorem applies only to square matrices.

2.3 Characterizations of invertible matrices (可逆矩阵的特征)
EXAMPLE 1
AA and BB are both n×nn\times n martices. Show that if ABAB is invertible, so is AA.
SOLUTION
Let WW be the inverse of ABAB. Then ABW=IABW=I, Thus AA is invertible.

Invertible Linear Transformations 可逆线性变换

2.3 Characterizations of invertible matrices (可逆矩阵的特征)
A linear transformation T:RnRnT : \mathbb R^n \rightarrow \mathbb R^n is said to be invertible if there exists a function S:RnRnS : \mathbb R^n \rightarrow \mathbb R^n such that
2.3 Characterizations of invertible matrices (可逆矩阵的特征)
The next theorem shows that if such an SS exists, it is unique and must be a linear transformation. We call SS the inverse of TT and write it as T1T^{-1}.

2.3 Characterizations of invertible matrices (可逆矩阵的特征)

2.3 Characterizations of invertible matrices (可逆矩阵的特征)

ill-conditiones matrix:病态矩阵
condition number:条件数。条件数大约给出方程 Ax=bA\boldsymbol x=\boldsymbol b 的解随 b\boldsymbol b 改变的敏感性的粗略度量

本节练习题的 41~45 涉及条件数等概念,可以等学完 6、7 章之后再回过来看