随着我国社会信用体系建设的步伐不断加快以及计算机和网络技术的不断提高,征信业的发展也需要适应大数据时代发展所带来的技术变革。征信机构在积累征信数据的同时,也需要提升自身的数据存储能力,丰富所积累数据的维度,提升数据分析挖掘、处理速度等各方面能力,从而促进征信业向一个崭新的数字化时代迈进——大数据征信时代。
因此,数据积累是征信机构一项重要的商业资本,大数据征信是征信机构的技术发展方向。征信机构需要不断地开拓数据渠道、发展数据挖掘技术、创新产品和服务,并不断将大数据征信应用到经济、金融、电子商务等各个领域。
征信大数据链的相关方包括上游的数据生产者、中游的征信机构及下游的征信信息使用者。
大数据征信并没有颠覆传统征信的基本职能,从数据的来源渠道看,大数据征信比传统征信数据来源更加广泛,除了来自金融机构和*部门,还有基于互联网的交易和社交信息等。目前与征信相关的大数据来源可以分为四大类。
1.信用交易数据生产者
信用交易数据是从事金融活动时所产生的数据,此类数据主要来源于金融服务机构。我国金融服务机构大体可以分为三类:金融机构、类金融机构和互联网金融机构,这三类机构构成了我国的金融服务体系。
金融机构:是指从事与金融服务业有关的金融中介机构,为金融体系架构中的一部分体系框架。本文将纳入“一行三会”日常监管下的传统金融机构归类为金融机构,涵盖了商业银行、证券公司、保险公司、基金公司、信托公司、资产(管理)公司、金融租赁公司、信用合作社、政策性银行等金融机构(企业)。这些金融机构在应用征信大数据方面具有天然优势:数据量充足。金融服务机构在业务开展的过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值的数据。在运用专业技术挖掘和分析之后,这些数据蕴藏着巨大的商业价值。
类金融机构:目前对类金融企业没有严格定义,根据21世纪经济报道采访到专业人士认为:类金融机构广义理解是除了银行、保险、券商等传统金融企业以外的投融资机构或平台,包括派生的、延伸的、创新的投融资平台。本文将“一行三会”监管范围以外的投融资机构称为类金融机构,主要包括了小额贷款公司、融资性担保机构、融资租赁公司、商业保理公司、典当公司等。这些投融资机构拥有客户交易的历史信息,这些数据对企业和个人客户的信用分析、风险识别等方面具有宝贵的价值,可以达到甄别客户和防范风险的作用。
互联网金融机构:是指将传统金融服务与互联网技术结合,利用互联网和信息通信技术实现资金融通、支付、投资和信息中介服务的新型金融业务模式。互联网金融并不是互联网和金融业的简单结合,而是基于安全、移动等网络技术,并被用户熟悉并接受的新模式及新业务。互联网金融的主要发展模式如下:
(1)众筹:个人或团队将需要资金的项目策划交给众筹平台,经过相关审核后,便可以在平台的网站上建立属于自己的页面,用来向公众介绍项目情况,从而获得资金。
(2)P2P平台:即点对点信贷。P2P网贷是指通过第三方互联网平台进行资金借、贷双方的匹配,需要借贷的人群可以通过网站平台寻找到有出借能力并且愿意基于一定条件出借的人群,帮助贷款人通过和其他贷款人一起分担一笔借款额度来分散风险,也帮助借款人在充分比较的信息中选择有吸引力的利率条件。
(3)第三方支付:具备一定实力和信誉保障的非银行机构,借助通信、计算机和信息安全技术,采用与各大银行签约的方式,在用户与银行支付结算系统间建立连接的电子支付模式。
(4)数字货币:数字货币是对货币进行数字化,是电子货币形式的替代货币。以比特币等数字货币为代表的互联网货币爆发,从某种意义上来说,比其他任何互联网金融形式都更具颠覆性。
(5)大数据金融:是指集合海量非结构化数据,通过对其进行实时分析,可以为金融机构提供客户全方位信息,通过分析和挖掘客户的交易和消费信息掌握客户的消费习惯,并准确预测客户行为,使金融机构和金融服务平台在营销和风险控制方面有的放矢。
(6)信息化金融机构:是指通过采用信息技术,对传统运营流程进行改造或重构,实现经营、管理全面电子化的银行、证券和保险等金融机构。金融信息化是金融业发展趋势之一,而信息化金融机构则是金融创新的产物。
(7)金融门户:是指利用互联网进行金融产品的销售以及为金融产品销售提供第三方服务的平台。它的核心就是“搜索比价”的模式,采用金融产品垂直比价的方式,将各家金融机构的产品放在平台上,用户通过对比挑选合适的金融产品。
2.商品和服务交易数据以及行为数据生产者
一些电商、金融、娱乐、旅游等企业,以及水、电、气、话、教育、医疗等公用服务机构,利用自有的工作机制和网络平台,收集本机构留存的客户买卖商品和享受服务中的身份信息、业务信息和社交行为信息,并对这些数据进行有序加工整理,形成数据库。由于不同企业和服务机构处于竞争状态,彼此力争形成自己所谓的“闭环”,提供他人分享的内在动力不足,所以这类信息也主要是企业和服务机构自身的客户信息。
3.*公开信息和公共服务信息的数据生产者
*公开信息里特别常用的就是企业工商注册的信息,主要是行政司法机关掌握的企业和个人在接受行政管理、履行法定义务过程中形成的信息。公共服务信息最常见的有工会服务信息、社区服务信息,以及信用中国及地方的信用信息平台的公开信息等。
4.通过技术手段爬取或非常渠道获得的其他各种领域的数据
对于很多企业来说自身数据积累相对有限,因此通过技术手段从互联网渠道爬取或者是以非常规渠道从黑市交易获得机密数据,也成为了一种数据获取之道。此类数据的种类多样,可能有涉及各种行业的行业数据或者涉及企业和个人的信息。
通过以上对征信数据上游生产者的介绍,可以发现不仅征信数据的形成渠道多样,并且数据种类和数据结构也非常复杂。从征信数据的渠道来源来说,有来自*的公开信息,也有从市场采集的信息;从征信数据的数据种类来说,有金融交易数据、市场交易数据,也有不少社交行为数据;从征信数据的数据结构来说,有结构化的数据,如数据库里的行数据,也有非结构化的数据,如视频、图像、文本等。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
请问大数据需要学什么?
http://www.duozhishidai.com/article-15279-1.html
自己规划的大数据学习路线
http://www.duozhishidai.com/article-14674-1.html
大数据技术怎么学习,在学习大数据之前,需要具备什么基础?
http://www.duozhishidai.com/article-12916-1.html
大数据可视化的几项基本技能你知道吗?
http://www.duozhishidai.com/article-9861-1.html
大数据可视化应用工具,主要有哪几种?
http://www.duozhishidai.com/article-1736-1.html