异步编程(Async和Await)的使用

时间:2023-03-10 08:38:32

.net4.5新特性之异步编程(Async和Await)的使用

一、简介

  首先来看看.net的发展中的各个阶段的特性:NET 与C# 的每个版本发布都是有一个“主题”。即:C#1.0托管代码→C#2.0泛型→C#3.0LINQ→C#4.0动态语言→C#4.5异步编程

  下面我来简单的介绍一下异步编程:异步编程,在 .NET Framework 4.5 和 Windows 运行时利用异步支持。 编译器可执行开发人员曾进行的高难度工作,且应用程序保留了一个类似于同步代码的逻辑结构。 因此,你只需做一小部分工作就可以获得异步编程的所有好处。(https://msdn.microsoft.com/zh-cn/library/hh191443.aspx)

  所谓的异步编程是利用CPU空闲时间和多核的特性,它所返回的Task或Task<TResult>是对await的一个承诺,当任务执行完毕后返回一个结果给接收者。这里看到这个可能各位不太明白,不要紧,下面会有讲解。

二、使用说明

  • 方法签名包含一个 Async 或 async 修饰符。

  • 按照约定,异步方法的名称以“Async”后缀结尾。

  • 返回类型为下列类型之一:

    • 如果你的方法有操作数为 TResult 类型的返回语句,则为 Task<TResult>

    • 如果你的方法没有返回语句或具有没有操作数的返回语句,则为 Task

    • 如果你编写的是异步事件处理程序,则为 Void(Visual Basic 中为 Sub)。

    有关详细信息,请参见本主题后面的“返回类型和参数”。

  • 方法通常包含至少一个 await 表达式,该表达式标记一个点,在该点上,直到等待的异步操作完成方法才能继续。 同时,将方法挂起,并且控件返回到方法的调用方。(这里所谓的挂起就是上文所提到的承诺,异步方法承诺会给调用方一个结果)

三、示例

  实践才是检验真知的最佳途径。

异步编程(Async和Await)的使用
using System;
using System.Diagnostics;
using System.Net.Http;
using System.Threading.Tasks; namespace 异步递归
{
class Program
{
static void Main(string[] args)
{
Stopwatch stopwatch = new Stopwatch();
stopwatch.Start();
ConsoleAsync1();
stopwatch.Stop();
Console.WriteLine("同步方法用时:" + stopwatch.ElapsedMilliseconds);
stopwatch.Reset();
stopwatch.Start();
ConsoleAsync();
stopwatch.Stop();
Console.WriteLine("异步方法用时:"+ stopwatch.ElapsedMilliseconds); Console.Read();
} private static async void ConsoleAsync()
{
Console.WriteLine("异步方法开始");
Console.WriteLine("Result:" + await SumAsync(10));
Console.WriteLine("异步方法结束");
}
private static async Task<int> SumAsync(int part)
{
if ((part += 10) >= 100)
{
return 100;
}
HttpClient client = new HttpClient();
Task<string> getStringTask = client.GetStringAsync("http://msdn.microsoft.com");
Console.WriteLine(DateTime.Now.Millisecond + " 异步 " + (await getStringTask).Length);
return await SumAsync(part);
} private static void ConsoleAsync1()
{
Console.WriteLine("同步方法开始");
Console.WriteLine("Result:" + SumAsync1(10));
Console.WriteLine("同步方法结束");
} private static int SumAsync1(int part)
{
if ((part += 10) >= 100)
{
return 100;
}
HttpClient client = new HttpClient();
Task<string> getStringTask = client.GetStringAsync("http://msdn.microsoft.com");
Console.WriteLine(DateTime.Now.Millisecond + " 同步 " + getStringTask.Result.Length);
return SumAsync1(part);
}
}
}
异步编程(Async和Await)的使用

  示例介绍:

    1、这个例子中有两种实现方式:(1)利用异步编程的方式实现(2)利用普通同步方式实现

    2、同时这个例子中实现了递归,这个可以不用考虑,博主只是想验证一下在异步的情况下,递归是否有效而已,实验结果为有效。

    3、这段代码中的GetStringAsync()方法是获取远程界面内容用的,主要目的是延长响应时间。

程序结果如下:

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAmoAAAGICAIAAAB+1Fs8AAAgAElEQVR4nO3d938UR57/8flHviChLJIECmQFMBKgCCIIR5xzImOTMRgw67R3j9tLtkE5R3IYskA4bPDu3m24273dPe/e3f/w/WGkYdTVVV3V3TNMeD0f/fCj5zPVVdUy4k319MwEfvSj46dOHTv10bGPTh49efLoyZNHjx8/evz4B8ePf3Di+AcnThw9ceLoyRNHT548duqjD3906sOPPz7+8Y+Of/rJyc8+/eizT09++unJzz49+dmnJz795OSnn5z85OMTn3xy4pNPTnw2UT/1+WenPv/81Oefn/rx56d+/Pmpzz87+dlnJz/95OTHHx//0aljp04ePXH8yIdHDx45vP/Agff37d39/ns79+zZsWf3jt27t+/Zs/P993ft27fn4IH3Dh3ce+jQviOH9x0+vO/wob379+/Zu3fX7t3bd+7cunXrO++++9Zbb73x5luvvfHGa2+88eprr73y6qsvvfrqSy+//MLLL7/w0kvPv/jicy+88Ozzz295/vktzz33zJYtT23Z8tTTTz/x9NNPPPnk5ieeaH7iiebNmzdt3rypuXlDc/OGjRubNmxY19TU2NTUuG5dw9q19WvX1jU21jU01NTV1dTXr6mrW11bu7qmprqmprqmdtWamlW1tatralfX1q1pbKxZu7ZuXVP9hg2NGzc2bty4dtOmtc2b1jU3NzU3Nz2+ef3jm9c/8fiGp57c8NSTG59+atOWZ5qf3dL83LOPP//s48892/zcs83PPrPpmac3PvXE+iceX7e5ee2mjQ0bNzRsWF+/vql+w/q6DevrN6yvX99Ut359/YYNDRs3Nk72v25z87rNzeuam9c1b1rbvKmxeVPDpo0N4cM3rK/fuKFh48aG5k2NoW3TZIOJZhsbNmyo37Chfv360Fbb1FTbtK523do1jQ2r6mqr1qxeUV1VUbWyrKqqvLq6YlV15erVy2vWrKirXdnQUFVft7KmZsWq6oqVj5VVVi4tK1u4eHFxaem84uKCoqKC+fPnzps/d968OeI2f/5cb1tBUdHkVjyvqLSoaEHJ/IUL5y9dNr+yan51w/y65qKmLSXNryx46p1Fz+9a/PLeJa/sX/ragWWvHyp741DZG4fL3jxc/ubh8rcPV7x9uPKdI8vfObLi3SMrt35QtfWDVVs/WL3taM32Y/U7jzXuOrZ217H1ez7c9N7x5r3Hm9//cOOeo+t2Hm3Y/kHdtsOr3z1U9c7Bx94+sOLNA4+9dXDl2weq3zm46t2D1e8crH7nQNXbB6rePvDYWwdWvLm/8vX9la/vr5jY9lW8vrc8Yqt4fW/F6/vCW/nr+8pf21f+2r6y1/aWvbp32SvvL335vcUv7ln4wu7S53aVPrdz0XM7lzy/o+yF7RUvbq18ceuKF7eufGnrihe3lr+wdenz2xY8u714y/b5z2yf+/SOWU/umPnkjvzJbeaTO2Y/tWPO0zsKntk5b8vO+Vt2FT+3q/T53aXP7y55bnfRs7vmb9lV+MzOuU/vmP3U9llPbp/1xLbZT26f/dT2OU9tL3hmx/xnd5Y8t2vhC7sWv7h7yUt7lry0Z+lLexa/tGfRi7sXPL+75Lnd87fsmP/01nlPvFu4+c15m14pbnq2tGHzotp1S9fUV9TUPlazZlXNqpq6VfUNq9euq2lqqgv9qduwoX7jhvqNGxs3bWpsbl7b3Lxuc3PT5s1Nj29uemJz0+ObmzY3r2vetHbTxsaN6xs2rK9fv75ufVNt07qah1tT7fqm2qam2qam2vVNdevW1q5bW7tubc3axjWNjWsaGlY1NKyqr6+ur6+ur6uur62ur62uq105sdVV1ddXNTRUNzauWtu4emJbG9pZ1diwqrFhVUNDdUN9dX1ddV1dVX1ddX1ddX19VUN99eRW1VBfVV9XVVdbVVu7srZmZW3NyrraKkvP69auXrduTdO6NU3r1qxft6Zp3Zq1jasb61fV11XX1VbV1qysXbOiZs2K1auWh7ZV1ctXVVdWV5VXrSyvWlm+ckXZihXLli9funz5kuWViysrFleUL6ooX1RevrCsbEFZWWlZWemyZSWLFxUtXFBYWjK3pHhOSfHckpK5pSUFixbOW7q0uLx8wfLKxSsmDl9UXr6wbFnpokVFJSWF8+fPKSycNbdg5pw5+bNn54W3OXPyQ9vcuTPnzp1ZUDCroGBWYeHswsLZhYXhX+SCoqKC4uLC4uJ5JSXzSkvnL1hQtGBB8cKFxYsWlSxeXLpkyYIlSxYuXbpo2bLFZWVLKyqWVVSULV9evnx5xWOPVa6sWl5VvWLVqpWr11TV1K6qbwj9XdqwadO6xx/f8PTTm5999okXXnj6xRefefmlLa+8/Nyrrz7/+usvvfH6S2+++fJbb77yztuvbX33jW1b39i+7a0d20Pb2zu2vbVj+9vbt721feub27e9tX3bWzu2vb1921s7tr+9Y/s7u3a+u2vXtt27t+3ZvW3Pnu3v7dn+/ns7Q9ve93e+//6uvZPbvr279u3dvW/f7n179+zft2f//vcCx08cO37i2I0bwfHx++Pj98fH7923bPfv3R+/Nz5+f/zB/QcPxh88GH8Q2vk6vD9lG5/cHjy4/+DryUO+Dm2hyv3xB/dCA927P3bv3t2xsTt37t65c+fWrdu3Jt28eevmrVs3Jx7dvnX7zq3bd27duXPrzp1btyda3rxx88b1G9evXw9eu37tWvDa1UlXrl4JuXzl8qUrly5dvnTp8qVLly5dvHTx4qWLFy5euHDxwvmL589fOH/uwrlz58+dPXc2tI2eHR09OzoyOjIyMjI8Mjw8Mjw0PDQ0PDQ4PDg4NDg4NDg4ODgwOBDa+gf6+wf6+wb6Qjvh/YHB/oHBgcGhwaHQNjw4ODw4NDw4NDw4PDw0PDI0MjI0Mjo0Mjo8Mjo8Ojp89uzIuXOj586Nnjs/eu7c6LlzI+fOjZw9OzI6OjwyOjQ8MnHsRFdDA1O3ULeDwyOT/w1vwxEHDg0ODQ0MDQ0MhYuqbWBoOGKIwYHBwf6Bwb7+gb6+/t7evp6e3u6e3u7evtDW09fX09ff09ff29ff29vX3d3T1d3d2dXd0dHZ0d7R3tbe1trW0tLW0tLqtLW531rbWh9u7W2tHe0tHR0tXd0tPX0tfUMtg2dbhi+0jl5uPRdsu3iz7dKt9ku32i/fbr98p+PKlK3z6p3Oq3e6rt7punan+9qd7mt3u6/d7Qne7Q3e7bs+1n99bODG2ODNsaGb90Zu3Ru+OTZ0Y2zwxt3+63f7gnd6rt3pvnqn6+rtziu3u67e7p66dV251XXlVueVW51XbnVcdrtdutVx6Vb7pVttF2+2XrzZcuFm64WbbRdvtl+80XHxRsfF6x0Xr3devN516XrnxesdF6+3X7jReuFGy/kbZ87fOH3uxld22+lzN06fv3Hm/I0z52+0XLg5sZ2/Gaqcnjjweng7fe56+JCWCzdaL95sm7q1XrzZOtHJjTPnrrecDbacvdoycrll+ELb4Nn2geGO/sHOvoHuvv7evr6+/r6+gb6Bwf6Bwf7BwYd/6iZ+Xx7+eR4amdwe/tl++Ee0P7RN9vNw/+E20D8w0N8/0Gfd+iO33nDdevjDrW9A7MR2C/fZ39vfH64/7GpwsH9waHKbmGTowNAhvX19vX19PX19Pb3hrbenp7e7p2di6+7p6u7p6u7p7Oru7Oru7Orq7Orq6Ozq6Ozs6Oxs7+xs7+hoa29vbWtvbWtraWtraWtrbWtvbWtv7ehs6+zq6Oru7O7u7Oru7Ozq6Ozq6Ohsb+9oa2trbW1raWltOdN65kzrmTMtEVvrmTOtZyy/sFN+9dpa29rbJraOtvaO9vaO9vbO9o7OjtDW2dXZ2dXZ2d3Z1d3V1dPV3dPd3dPd09vT09vT09fT29fb29fb19/X19/XP9DfP9g/ODQY+ht4eHR49OzI2XOj58+fO3/h/IWL5y9cunDx0oVLly9evnzx8uVLl69cunLl8pWrl69eu3ItePVa8GoweC30X5vt+rXr168Fr1+7fiMY2m7cvH7j5o3QdjO03ZrYbt26eet25Hbr9uQWOHr8WPDG9f0H9mfnZku2nOzcnJy83Jy83Nz8vLyZ8i0/Ly8/Lzc/b0qzWfl5s/LzrdvDQ3Lzc3PycrJzsjOzszKyMmdkZoS29IyMGZkZGVmZGdlZmdlZWTnZWTkPZ5U12T50SHpGRlrGjIfbjNhuD4fOSM/ISA+dQlZmRnjLzgqdRWZ2VlZ2dsS55GTn5dj8YMM/ltyc0MmKW2Z2driryC07JzvbUszOzpwcPTM7K9PuKNUWcXjGlJPKzBT+10zOLStj8v9mrP/XZMxIy8hIy8hMy8xKy85Jy82fnjdn+qzC6XOKps8tTStclDZ/aVrRsrTisrTisrTi8rSSiS09vJWWzygtn1FanjGxVWQuqMhaWJG9sDJnUWXuosq8xZX5S5bPXLJ85pLl+YuX5y2uzF1Umb2wInthReaCiozSivBRU7bS8FPlGZNDzLCO5bCF24emmlZcnlZcnl5SNqOkbEZJWcbkllk6sTOjpCx94kzLpheVTYvY/t/Uh9OLy6cXT3QY2qZPbtOmtpzSOPLnNrmlTU5selHZ9PlLp89bMq1w0bSC0ulziqbPKkzLm52WOzM9J29GTm5Gdvbkr0a27R/LyL+CIraIP+HWP9uWbfLXJDvc2LJNaRk5B/u/DI1+cew2yRnZnpf119ayZUn+Boj4KyIrMzsrIztzyq/t5G+u5a9T8df24W/uI/vrdEZoGjMyM2ZkZoazYOKnIf3xTv2RGv5pefiDzbb9AzPlz0zg8LFjY/fvZ+bkBPwQDAaj1NiXA/V783cIAECyOXjsw7v3xzNyckMPgxoUvZmmjmN7o2zTmbx4LPEJADC2/9iHd++Pz4iIT3V7dfwYZa3OcI4jej+E+AQAGNt/7Pjd++Pp/sWn4kB9+iO6mKSXxgAABAKBwIGjH969Pz4je+K1z1ByKFLNdXwqjtJpoJm1ss5tK7J+wvvkKADA3oGjR+/euzcjOzv00OPCzsf4VLTxcfUpJqXj2hcAgMDBI0fG7o1lZGWGHuonk2I56G6BqN8mevGpP38AQEo7fOTQ2L2xzKyM0ENFOloa2DJafWqmlGYWuotz8bz0oxcAkLo++ODgvXtjWXbxGdksGvGpeaxRHLro3HTmAAAEjh09dP/eWHa2+/i0XczJGiuekq0pNYteOrecgjqbAQAIfHj04Pj9sdwoxKfpOlUcUXNl6aJzS93dvwAAAKnrxIeHx8fH8nKttw7JFmHqdNG8Fup6oakZZkahq3lGAAA8dPL44QfjY/l5WaGHRqtPWeC5uLiqU9QMNv3OA6w+AQDufHTiyIPxsZlCfMqol3Hurqwq6urlrI9FzeU1AACBQCDw0fEjD8bv6cSnuFAL1zWDU3a4Ytzwswrq/tXj2rZU9A8AQCAQCJz88MiD8XvixVtbluWaaboYrTtdHOuY/TpYfQIAnJ348PD4/Ye3DsU5wgwAEBeOh964kpMRm+HUl2Edl7PEJwAgLhw7cuD+vbs52TNiM5xj/qlfpOSFSQBAXPjg8L57Y3eyM9NjM5z3+PR3PgAAuHHo0PtjY7ezMtPCFdsAE1d77haCQeWdtLLRFXMzojgFsZl+3Ze5AQASyeFDe8fG7mRmpIUeyjJDva/P8ZDoxacl+fzal1UAAMns4MG9Y2O3MzLT1Esu9b4+/fgMmtAZV9HYS91oGgCAJHHw4PtjY7czsqaHHsriMxhx0VXWUociHS0N1IebDirO37aB6zrxCQCp5cDh9+7eu52RLY3PgGSBZRt+jmQxGb34VEe+bP7u6qZzAwAkqgNH9ty9f3tGrsPqMyBPDtujZFzEpyWzZU8pRhTZtpEdq1MnPgEgtew/sufu+O0Z+c7xafusum7b0rKjrgfk8ekirrzHpKxOfAJAatl3bPfdB7fTZ00LPdSPT51YFVkOEVeEslgVD9cZThzd6Fz0z5f4BIDUMhGfs6fJ8izg9n2QthxjMui0vnQdVLZRbXRejj8cQhQAUsW+D3ff/fp2+pxpsRnOMV0UDQgnAEC82Ht8951vbqfPffTxGZy8QUmsE5wAgPiy78Tuu9/cTouD+AwIV25JTQBAnNp38r0739xOK4hRfHpEmgIA4sK+k3vuxjA+xRttjG69IT4BAHFh/8n3Yhyfpg24zRUAEHf2f/Te3W/uJFB8+jsfAADcOHjq/bFvp8RnUP5mx8gFn7uFYHDq5/+JPUQ1Pi3zlE3etO7L3AAAieTgR1PiU5YZ4oH6kWk5yrSBX/FpG//e92UVAEAyO3Rqbyg+1Usu8cBox2fQhM64isZe6kbTAAAkiUM/2jf23d3Yrz5lEaju011EhfuPRnyqWwIAktPhT/bf04hPcYElq6vJYjJ68SmuFMVnxW7d1U3nBgBIVIc/OXDvu7F0eXxGMl2l2ba07KjrlorsKPWIIts2smN16sQnAKSWI58euv/ThIxPF3HlPSZldeITAFLLB58dvv/TsfRC46/Llu2rWQ4RV4SyWBUP1xlOHN3oXPTPl/gEgNRy9MeH7//sXnrhdFmeBdy+D9KWY0wGndaXroPKNqqNzsvxh0OIAkCqOPbjD8Z/di+8+ow2x3RRNCCcAADx4tjffTD+s/vphWmxGU6djrYNWNUBAOLO8b8/9uDn4/EQnwHhyi2pCQCIUyf+4cMHv4hdfHpEmgIA4sKJnxx/8IsHsVx9OlIfHpt5AgCg8tFPTsQ4Pk0bcJsrACDunPrHj77+PpHi09/5AADgxql/+uibqfFpG1Hias/0umtk54rLtlGNT8UpiM30677MDQCQSD7+51PffP91OD5ts0GnaBSfRg38ik9L8vm1L6sAAJLZJ/986tvvv7Z86lBkA8ViK6rxGTShM66isZe60TQAAEni03/5+Nvvv9H8zFsF0/iURaC6E3cRFe4/GvGpbgkASE6f/esn3/7yW8f4VC+w9MNDFpPRi09xpSg+K3brrm46NwBAovr8i0++04hP2bOyooyL+IysyI5SjyiybSM7VqdOfAJAavnxl59+96tv0wtcxqdpbPgYny7iyntMyurEJwCklh9/8elPf/Wt4uuyoxeftitCWayKh+sPajtbv/ZlFQBAMvv7r3780199l14wTZZnAeXNpV7i07Fu27ProLKNatvzMqorfm4AgKT1D2f+7me//ml49RltjumiaEA4AQDixU9a/v5nv/5ZPHxddnDyvSVineAEAMSXf2r7yc//LS7iMyBcuSU1AQBx6p/a//Hn/x67+PSINAUAxIV/6fznX/z7z2O5+nSkPjw28wQAQOWLrn/5/je/iJOLt7YNuM0VABB3vuz+4vvffM/3fQIAYOB031e//K01PhVvbbQt6q8FgxEf3W57eFTjU+e8XNR9mRsAIJG09J/55e9+afm67MiE0NkXH8o4tolefLo4L81zt60AAJJZ20Drr373K8vXZcdDfAZN6IyraOylbjQNAECSaB9q+/Xvfx26dSicAbbxEFBmpGl8yiJQ3Ym7iHKcv/c68QkAqaVrpOPffv/r9MLpYmSG2zgusPTDQxaT0YtPxXkFpv7jwHvddG4AgETVc7b73//j38LxKa4ILTsek8NFfFqCXPaUYkTb8xLbyI7VqROfAJBa+s71/uY/f2N532dkGMj2ZRU1H+PTRVx5j0lZnfgEgNQycL7vt394NPFpuyKUxap4uP6gtrP1a19WAQAks4ELfb/9w28iv7DMNtIsFUtj/eEcYzLotL50HVT652VUDwpczA0AkGCGLw3+7o+/5fs+AQAwMHp56Pd//F1aHMRncPIGJbFOcAIA4su5q6P/8V+/j4f4DAhXbklNAECcOh88959/+o+YXbz1iDQFAMSFSzcv/uHP/xnL1z4dqQ+PzTwBAFC5cuvSH//8B77vEwAAA9fuXP3jX/6YQPHp73wAAHDjxr3rf/rhvyI/Ml5c1dnWTa+7ho+SHRuU33lru++C4hTEZvp1X+YGAEgkN8dv/umHPyk+Ml5nX3wo49gmevFpST6/9mUVAEAyu/P17T//9c+RX5cdiI/4DJrQGVfR2EvdaBoAgCRx95u7f3EVnxam8SmLQHUn7iIq3H804lPdEgCQnMa+HfvL3/4Sjk/bhZRtzokNdIaTxWT04lMd/7KTclc3nRsAIFHd/+7+f//PfytWn+qiom7LRXxGVmRHqUcU2baRHatTJz4BILWM/3T8Bw/xaRobPsani7jyHpOyOvEJAKnl659//cP//JBemBYZAPrx4CU+bVeEslgVD9cf1Ha2fu3LKgCAZPbNL7756//+EFp9imEWYluMfEp/OMeYDDqtL10HlW1Uq89Xpx4UuJgbACDBfPv9N3/937/G86cORT5FOAEA4sJ333/7t/iIz+Dke0vEOsEJAIgv333/7d/+Ly7iMyBcuSU1AQBx6rtffvu3//tbekGM4tMj0hQAEBdujd/88w9/4vs+AQAwsPfE7jvf3I5lfJo24DZXAEDcWf3UY4OX+hIoPv2dDwAAbqxsrui/0BN67VOxqhPrptddw0fJjg3K77y13XdBcQpiM/26L3MDACSSx5or+i70KL7vU3yo30bk2CZ68WlJPr/2ZRUAQDJzjE/FYiuq8Rk0oTOuorGXutE0AABJYnlzeWR8BiMuroYaGOWTTrPI9mL2qDtxF1G252XbwHWd+ASA1LK8ubz3Qk/oYxNsF1K2IWehHx6ymIxefKr/KSA7L3d107kBABLV8k1lvVMv3orLQUX8yIoyLuLTkuWypxQjimzbyI7VqROfAJBaKjeV9Wi/9uk9NnyMTxdx5T0mZXXiEwBSS+Wmsp4L3Y8kPm1XhLJYFQ/XH9R2tn7tyyoAgGRWsXFZz/luxWufinrAW3w61m17dh1UtlFtdL629aDAxdwAAAmmfOPScHzGgGO6KBoQTgCAeFG+cWnP+a54iM/g5I1LYp3gBADEl7L1S3rOxUV8BoQrt6QmACBOLWtaFMv49Ig0BQDEhWVrF3af7Yzl6tOR+vDYzBMAAJUljaXdZzsT6AvLuM0VAPDoLWks6Uqo+PR3PgAAuLGkvqTrbEfaZHzarupsF3ym113DR8mODcrvvLXdd8EySdnMTeu+zA0AkEgi49M2GGwjR1FXc2wTvfi0JJ9f+7IKACCZLW4o7hrtSC+YplhUBYUVZyD68Rk0oTOuorGXutE0AABJYlG9bny6SyCxWWR7sU91J+4iynIKigau68QnAKSWxQ0lXWcfxqcYkJHZE5DkhH54yGIyevFpyWbb2JOdkWnddG4AgES1uLGka7TD8RtXFAs4o+RwEZ+WLJc9pRhRZNtGdqxOnfgEgNSyuLG062ynTnyKT4kPHfkYny7iyntMyurEJwCklsVrF+jEZ7i9j/FpYWmgfuguq3TO0XRfVgEAJLMlk/EZ0Hu/o8fYcIzJoNP60nVQ2Ua14/k61oMCF3MDACSYRRHxGQOO6aJoQDgBAOLFosZ4ic9gxP29ljrBCQCIL/ETnwHhyi2pCQCIU4sm77x91BPRQpoCAOLCosbSrrMdfN8nAAAGFjaUdI7GND5NG3CbKwAg7iysL06s+PR3PgAAuLGwrqhztF39vs+A3Y08ptddw0fJjg3K77y13XdBcQpiM/26L3MDACSSBXXzO0fbLd+4YhszlgN12ogc20QvPi3J59e+rAIASGYLah3iU7HYimp8Bk3ojKto7KVuNA0AQJJYUDuvc7QtvWBaZFEnPi1M41MWgepO3EVUuP9oxKe6JQAgOZXWWOPTkgQ66zz98JDFZPTiU/1PAdl5uaubzg0AkKgsq0/1usp7criIT0uWy55SjCiybSM7VqdOfAJAapm4dSjizltLA53Vm/5wPsani7jyHpOyOvEJAKllQf3EG1dkMRm9+LRdEcpiVTxcf1Db2fq1L6sAAJLZwvriyPgU8yyg8X5Q/eEcYzLotL50HVS2UW17XkZ1xc8NAJC0FjbE+6cORT5FOAEA4kL8xGdw8r0lYp3gBADEl/DF29gMp05B24uiUZ4RAADmwrcOPeqJAACQOBbUEZ8AABia/Mxb4hMAAG22n3kLAABUwp95G4P3L/rbueIeXfVbM70PDQBIdaU1heHVZ2S6RC9pbHs2HUvsxDYyFXUAANwrWVPYMdKW9kjjUzGWeikp6ySygawOAIB7OvGpTizF8s42qxRxqBhC3UlAWG6K8SkbAgAAYyVrCizxackYv/bDFMmnTx2fASE1xToAAO6J8RmQLz0t2eOYjrGPT9vUtK0DAOCe48Vbx7xRZKr3+BQzW92JbP7qKQEAYMYoPr3shyni0zEUdTpR90l8AgB8UFIzr2Nkyvs+Q3VxX5FtisyT9WObajrBptOJZh0AAJdKa+d3jrbxmbcAABgorZvPR8YDAGCGb1wBAMDYAl+/LtvolUXXL0OqD7R9VnMsXhkFAGhZ0FDSebYjvTAt9FC8MUdxq47INH4c27vIQuITABB1Cxqt8aluLzZQ3OPqLh2NRtR8yrYTfY6TBACklgWNpf7Gp+JAd3HlLj7dxSFJCQDQYhufitRxHZ+Ko3Qa6GShYiaaEyM+AQBaYrb6dOxHv41tXb2+VHSl5jhJAEAqcv3ap2PwqEPI9/i0fdZxMkYPAQCYIN55G96xTR396FLTX+qJdcUopoFHfAIA3LC871MWk9GIT81j5Wtas2jXmQbxCQDQYvnUIRfxGZx6sVT2lOIoRWOjopipjmtczWAGAGAKy2fe+hif6uxxjE9ZgHmMZEXAiyMSnwAAe5ZvXImMSdt1mCJ+AsqUVRylXzTNM/30DUa8LYfUBAA4KKmZ1znSll4wLfTQaPUpCzzH+HEXn5pRGpn3mvEpnh0JCgBQKakp7LCLTxn1tVOd1FGv/2RFnXAVJ+AYn4qrtZqnAwBIRfrxqVjP6SeNLDExqc4AABQJSURBVM8cr6kqqDuXtbeds6wHnVMDAKQQo9Wn42pPTZ2R0ThWJyBNZwIAQKCkdsprnx75kqbROzBuBwIAJJjS2nmWO28dKXozzRvH9rYNFEd5mbyL6QEAUpTsfZ8y6suhpnHl7rKtOj6NHqqnSnwCAOzJPrRPxjE+FQfq0x9R/ZT+Q+ITAGDA9iPjFanmOj4VR+k0cJe1pvGpM4QLlk4Uk3dd9z5JAIAB119YZlvxMT4VbRTHKlLWNn7UffqSSZaho7EvPgQARNeCtaWdZzvS56WFHurHp2NQyUJLcyBFG8WxioBUP4xSfIo/hOjtE58AEDuy+JRFoPrvaP2/wTVT1rZPH+NTPbrHQAp3q+jfNgKN4tPxBwgA8J8iPiObRSM+NY+1DVpZ8pnGp7iv6M2ILPZsG0RW1HXb+JQNAQCIlon4FF771I9P/fRSP2XbWL8YfkozaBUzV5+sZkqpR5dlZOSB6qEt3RKfABBTpY0lnaPt0YhP9d/mjvGpSBH9bvUf+h6fiqMc09EoPr1MDADgUqnkfZ9BgaWB+qFpdmoWHRPCl/jUH06TLOd09jUrxCcAxFRJXVGHJD4jm9nWZZFjGnKaRZ0oNY1P8d8H6iFcpJRliKBA1lKsK3omOwEgpkpq53WMtHn51KHIp3T+Epe1UQeYi7B0bKDIZkWHBBUAIPm/71NnFMW4mu0BAKmleE1Bcnzfp5d1sy/tAQAppHh1QcdwW1oKf9+n5mVbAAAeKl49t2O4NS1i9alzmVTG9xWeUbapJy87C+ITAGCsePVco9c+1XXTxHUXyS66NT0v4hMAoFK8Wve1T834VByuTz1utOOT7AQAOChZU2h544pmqoVpxqfiKJ0GRrPSSURFP+F9chQAYK+kZl7HqKf3fUYpPhVtfFx9iknpuPYFACBQWjff9lOHZCJjRp+iH52xTI91HZ/68wcApLTS+ikf2hfQyEVFb/pJo9+zZhY6Z7jdQEGn1afRSQEAUkVpfXFHxDeueGQUn5rHGsWhi85NZw4AQKC0oUSMT6MVmO1izugoRWP9opfOLaegzmYAAKIYn+rgcRxCf2XponNL3d2/AAAAqSscnzrXSMVIk4WNaXZqFjXDzHX8ux4RAJBabF/71IwfWdExctzFp2aw6XceYPUJAHDH9s5bsZnmJVN3V1Z1xnW9YNUsygYiPgEANjTf96m++KkZnLb9iOs/22cVdOapfzlX3T8AAIHA1E8dUmekWDFNFxfZbHSs0fw1WxKfAAAbls+89ciXNI3egXE7EAAgwYjfuKJ5mdSWad44trdtoF5lejwFo+kBAFJU8eq5HSOtSfN9n+pLr+JD9VSJTwCAveJVczuGW9OS5fs+TeNT3SfxCQCwV7xqjiU+NVMtTDM+FUfpNHCXtabxaXTijvP3pR8AQDwS41PdXmwQpfhUtFEcqwp/Zdba9ukl8CzDEZ8AkFT0L95aGjgGlXrVFb34dPeQ+AQAGLDEZ8Dbzav6CaHfs1j3MT69Z7wm4hMAkkrR6rkdI22R8emFUXxqHusY50H5IlL/YTBiVe04JVNkJwAkm6Kp7/sMcb3gU8eViyFMF4X6QauYuW2URvYvG10xJaNDAADxrmh1QftwVOJTnRmOQ9gGnmm3LlafAV/jk+wEgORUtHpu+3BresE0x3Wb7RpOFkim2alZdIwiX+JTfzhHxCcAJKeiNRPxGVnUXPPJiqYhp1nUiVLT+LT9N4FiCFafAIBAIBAoWjO3Y2p8ul6HaUaFrI16XHdrU99Xn8QhACAQCASK11g/Mt62mSIzFKs3nX5CFfW4QSXHzh1HUYyr2R4AkFoi41OdkWLFxZVMo7rRsY6dmGYh2QkAkJqMT3++79MvRBcAIK5Nft+nz/GpeblVcbi/8wEAwE/Fdh+b4J3RdWCx7iJxAQCInaLV1jtvfeE9Pv2dDwAAfipaJf3YhFAD11dfTS/e+hifllFkQ5vWfZkbACAZzF81JzI+xQa2UeTYrWMbsYFf8Wkb/973ZRUAQCp65PEZNKEzrqKxl7rRNAAASc4xPi3088NLFrqLqHC30YhPdUsAQGqZL3nt07ZxzMLDxSjiSlF8VuzWXd10bgCAZDPxjSuFU9736Vdy2Hai01gMP52xRLZtZMfq1IlPAEAgEAgUrSloH2lzjE93seFLfHpcifpbJz4BAIFAIFBUUxiKz8hg8BIbtqtAmcijLJ3Y1jXJzsXLvqwCAEhFxbXzOiZXn7bBFuIuNmz70WnmesSA3VnIzsuoHhS4mBsAIElExqe/9JNSbEM4AQDiWpTiU5Z/ilxkVQcASBjFNf7HpzojxQqpCQBIMEU188Q7b+MWKQsAiAsxjk/xBhyjm3GITwBAXIh9fJo+xe2vAIC4E37fZ2yG8x6f/s4HAAA3imoKIj82wXZtZ7vac3311fTirY/xqTgF2SR16r7MDQCQSOavKRA/dSgg+fYS2b74UMaxjdjAr/i0JJ9f+7IKACCZzV81t32kNQ7jM2hCZ1xFYy91o2kAAJLEvND3fQqvfVriU4xSWXtHXrLQXUQ5zt97nfgEgNQyr3pW23BLesG0yKIlDByzLWbh4WIUcaUoPit2665uOjcAQKIqXDmrbWhKfNpmZ8DX5LDtRKexGH46Y4ls28iO1akTnwCQWgpWzoyMT3Uw+BUbvsSnu3E9xqSsTnwCQGopqIpRfNquAmUij7J0YlvXJDsXL/uyCgAgmU1cvJ28dcg2BmyDTdHekW0/Os1cjxiwOwvZeRnVgwIXcwMAJJiCqinxGQP6SSm2IZwAAHFhbmzjU5Z/ilxkVQcAiDsFVbNjFp/qjBQrpCYAIE7NrZrVGtuLt16QpgCAuDBnIj7TYjOceKON0U03xCcAIC7MWTmrdehMLOPT9ClucwUAxJ3ZK2cmVnz6Ox8AANyY/djMlsEz6YVpioWdY9Ho6qvpxVsf41PnvFzUfZkbACCRzHosr2XwtPiFZWGRddm++FDGsY3YwK/4tCSfX/uyCgAgmc1a7hCfkWIZn0ETOuMqGnupG00DAJAk8itzzgy4iU/9p2xbustCdxEV7jYa8aluCQBITvnl2WcGvgrHpyzD1NkWs/BwMYq4UhSf1T9fdd10bgCARJVXlnm6/0vLxyYYrcZcJIdtJzqNxfDTGUtk20Z2rE6d+ASA1JKzNON035eRX5cdiH5s+BKf7sb1GJOyOvEJAKklZ2n66b4v0gumRQaAzr6sImO7CpSJPMrSiW1dk+k5RuPnAABIBjlL0k73fZFWMC3g6v2O7mLDth+dZq5HDNidhen5ygLewsXcAAAJJmdx2uneifiMDf2kFNsQTgCAuJC9aPpXMYxPWf4pcpFVHQAg7mQvmv5V77/GJj7VGSlWSE0AQJyKZXx6R5oCAOJC9qLpX/XELj7FG22MbrohPgEAcSFrYazj0/QpbnMFAMSdrIXTEis+/Z0PAABuRManYlUn1l1ffTW9eOtjfCpOQTZJnbovcwMAJJJwfEamgm3MWA7UaSNybGM7kP7h6p5l5+hlX1YBACQzx/hULLaiGp9BEzrjKhp7qRtNAwCQJFzHp4V+fnjJQncRFe42GvGpbgkASE6y1z5tV1eyhIhZeLgYRf1PAdl5uaubzg0AkKiyFk6zfGyCJQnU8SMrqtl2otNYDD+dsUS2bWTH6tSJTwBILR7j011s+BKf7sb1GJOyOvEJAKnFEp/qYPASG7arQJnIoyyd2NY1yc7Fy76sAgBIZlmLHsanmF4htsEW+ZTpoLb96DRzPWLA7ixk52VUDwpczA0AkGCyFk//qveLdL7vEwAAfVmL02IZn7L8U+QiqzoAQNzJXpL+Vd8X6YXTYzCWOiPFCqkJAIhT2ctmxCw+vSNNAQBxIacs83T/lzGLT/FGG6ObbohPAEBcyCnPOt3/ZXphWmyGM7p+K9a5zRUAEBdyK7JP93+VQPHp73wAAHAjFJ8z5qVFFtVvbbStaw7n4uKtj/GpOX/Tui9zAwAkktzKHEt8WhLCNnIsdf0EdWwmNvArPhXn5WVfVgEAJDNLfIoLLHE/NvEZNKEzrqKxl7rRNAAASSKvMvf0wER8qqPRkhPu4jOgkYvqYw3Pz+YUFA1c14lPAEgtectzQ6tPWRxGZo/tUzqx5xcXo6hjXjZ5d3XTuQEAElVeZc7p/q/SJ+NTTETbh5E9uEgO2/jRaSwOrTOW7XmJbWTH6tSJTwBILbZvXIkMA0vkxE98uogr7zEpqxOfAJBacu0+dUiRl+qHCrarQJnIoyyd2NY1yc7Ly76sAgBIZjnLMizxKcaYItvcxYZ4iG0nsqKX7JSdl7qloh4UuJgbACDB5CydcTq2Hxmvn5RiG8IJABAXspekn+7j+z4BADAx8X2fMYlPdUaKFVITABCnYrz69Ig0BQDEhYnXPgv4vk8AALTF+NYho+u3Yp3bXAEAcUF840pUeY9Pf+cDAIAbOWUT8Sm7mqpY8LlYBbq4eOtjfGrO37Tuy9wAAIkkZ/JTh2yjJSB/t2VkXT9BHZuJDfyKT0vy+bUvqwAAklluvMZn0ITOuIrGXupG0wAAJInc8izb1z4141PdxpaXLHQXUZrn4qVOfAJAarGNT9nqyjYzYpkcLgYSz0V8VuzWXd10bgCARCXGpyIJbKPIRYLaxo9OYzH8dMYS2baRHatTJz4BILVY4lMdA7KV3COJTxdx5T0mZXXiEwBSi2N86kSmTnjYrgJlIo+ydGJb12R6LvrnS3wCQGrJKXNefdoGm6LuyHYInWayGWoOapmt6XnJAt7CxdwAAAkm/MaVmI2on5RiG8IJABAXcpdlnO579B/ap8hFVnUAgLgz+Y0rfN8nAADacpbyfZ8AABjKWZJ+uu+LtFjFp3ijjdFNN8QnACAuxD4+TZ/iNlcAQNyJ8cVb7/Hp73wAAHAj8tYh2arOtK7g4uKtj/FpGcXf8yXaASCFTLxxpWBaZCp42VdzbCY28Cs+Lcnn7/nq/wQAAMkgt2zifZ/xFp9BEzrjKhp7qRtNAwCQJGw/dcgoNhTtbXnJQncR5ThP73XiEwBSi/4XlskyI5bJ4WIgMfLFZ8Vu3dVN5wYASFR55Vmn+79y/MIyxXrLRYLaxo9OY3EOOmOJbNvIjtWpE58AkFryKrLD8WmUIupVnZov8ekirrzHpKxOfAJAagnHpywOTfdlbFeBMpFHWTqxrWvy6xyJTwBIdZb4FDNMnW1iUYfY3rYHWdFLdspOTd1SUVf8fAAASSu/Iifytc8Y0E9KsQ3hBACIC/mVOWdiGJ+y/FPkIqs6AEDcibx1KNrUGSlWSE0AQJyyvHElzpGmAIC4kGf3qUPRI95oY3TTDfEJAIgLuWUZp/u/TKAvLOM2VwDAo5e7LMHi09/5AADgRu6yGWJ8Ri7sFAs+F6tAFxdvfYxPzfmb1n2ZGwAgkYirT0tCKNLCsY3tUaYN/IpPxXl52ZdVAADJLG/qa5/iAutRxWfQhM64isZe6kbTAAAkibzyh3fehjNAPz7F9o68ZKG7iHKcp/c68QkAqSWvIkvnI+Ntsy32Cy8XA6n/KSCbv7u66dwAAIkqX/6R8eqQCO+7SFDbnnUai+GnM5bRebmrE58AkFryK7PPDFg/dUgnNmT7OnyJTxdx5T0mZXXiEwBSS35l9mllfJruy9iuAmUij7J0YlvX5OW81OdLfAJAaskXPjJejDHbYFPUHYntbXuQFb1kp5fzsq0HBS7mBgBIMPmVsfvGlRD9pBTbEE4AgLiQX5HN930CAGAmvzzrTP9X6QV83ycAANryyzPPxPAj4wEASAYT3/dJfAIAoC8vtt/3CQBAMshblnG6/8s04hMAAH3h+IzB+xf97Vxxt5H6rZnehwYApLq8ZTPCq8/IdIle0tj2bDqW2IltZCrqAAC4Fw/xqRhLvZSUdRLZQFYHAMC9yNc+ZfGpTizF8s42qxRxqBhC3UlAWG6K8SkbAgAAY2J8WjLGr/0wRfLpU8dnQEhNsQ4AgHuR7/sUIyegXB06pmPs49M2NW3rAAC4N/GhfYXTA5Lkc8wbRaZ6j08xs9WdyOavnhIAAGbyKx5+XbZjfHrZD1PEp2Mo6nSi7pP4BAD4YGZlTig+Fau0YITIYx3rin5sU00n2HQ60awDAODSzOW5ZwZOx/L7PgEASHgzV+SdGTydXpj2qCcCAEDimLUyn/gEAMDMrJUzW/yLT6NXFl2/DKk+0PZZzbF4ZRQAoMUSn+KNOUY33ZjGj2N7F1lIfAIAok6MT1lL2VOKe1zdpaNjG4+TDFf0OU4SAJBaZq3M9zc+FYe7iyt38ekuDklKAICWWY9Z49M0dTTjU3GUTgOdWSlmojkx4hMAoGXWiryWwYfv+zRNtUDU4lPRxrauTnpFVy7+xQAASHWzlueecRWfjsGjDiHf49P2WcfJGD0EAGDCzMocy6cOeVmQ6eeNfs9iXTGKaeARnwAAN2ZGfGS8d0bxqXmsY5wHIxbEHidMfAIAtEx8YVnBtMii6wWffvxoDmFUFDPVcY2rGcwAAEyRX54ZpfhUZ4/jELIA8xjJioAXRyQ+AQD28suzzvR/mV4wzXEdZrsmk6WRaXZqFk3zTD99g5OrVRejAABSjpeLt7KiY/y4i0/NKI3MeNMT0Yx/AECqm1mZbYlP/WwT22g206+r88wSruIEHONTsZjWPB0AQCqatTynZcD5fZ+KILHNLUVj24rjNVUFdeey9rZzlvWgc2oAgBQya0Vu+FOH1BkpVkyjxUU2ezxWJyBNZwIAQGD2xGfe+vO+TwAAUsLslTNbBs/49XXZAACkhDlVs1qGiE8AAEzMqZ7dMnQmfV7ao54IAACJY0717JahFuITAAB9/x/XM08R16XqTQAAAABJRU5ErkJggg==" alt="" />

  结果说明:

    1、同步方法按规矩进行,有条不紊。

    2、异步方法直接执行完毕,用时7毫秒。执行过程异步于主线程。

四、尾语

  微软的官方文档很值得学习,大家感兴趣的可以看看去。这里引一个流程原理图,所对应的示例到文档中去看,链接上方已给。

    异步编程(Async和Await)的使用

(源程序感兴趣的可以留言,我随时提供)